K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

tự học đi chứ

28 tháng 12 2020

S = 1 + 4 + 42 + 43 + 44 + ... + 42019

S = (1 + 4) + ( 42 + 43) + (44 + 45) +... + (42018 + 42019)

S = (1 + 4) + 42(1 + 4) + 44(1 + 4) + ... + 42018(1 + 4)

S = 5 + 42.5 + 44.5 + ... + 42018.5

S = 5(1 + 42+ 44 +... + 42018\(⋮\) 5 (ĐPCM)

28 tháng 5 2019

#)Giải :

- Tổng S khi N = 2000 :

         Tổng S lúc này có : ( 2000 - 1 ) : 1 + 1 = 2000 số hạng

         Tổng S lúc này = ( 1 + 2000 ) x 2000 : 2 = 2001000

- Tổng S khi N = 2018 :

         Tổng S lúc này có : ( 2018 - 1 ) : 1 + 1 = 2018 số hạng

         Tổng S lúc này = ( 1 + 2018 ) x 2018 : 2 = 2037171

                  #~Will~be~Pens~#

28 tháng 5 2019

N=2000

=>S = 1 + 2+ 3 +4 +5+....+2000

    S = (2000+1)*2000/2

    S = 2001000

Hok tốt

1 tháng 12 2019

Mai m đi hok rồi😱

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

26 tháng 3 2016

2555555555555555555555555

15 tháng 6 2018

a=5000

22 tháng 8 2018

1 + 2 + 3 + ... + 100

= (100 + 1).100 : 2

= 101.50

= 5050