Chứng minh rằng (2^2020 - 2^2017) chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2^{2020}-2^{2017}=2^{2017}\cdot\left(2^3-1\right)=2^{2017}\cdot7\)
Vậy \(2^{2020}-2^{2017}\) chia hết cho 7
22020-22017 = 23.22017 - 22017 = 22017.(23-1) = 22017.7 chia hết cho 7
Có : 2^2020 - 2^2017 = 2^2017.(2^3-1) = 2^2017.7 chia hết cho 7
k mk nha
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Ta có:
2^2020 - 2^2017
= 2^2017. ( 2^3 - 1)
= 2^2017. ( 8 - 1 )
= 2^2017. 7 chia hết cho 7
Vậy ( 2^200 - 2^2017) chia hết cho 7
Ta có:
2^2020 - 2^2017
= 2^2017. ( 2^3 - 1)
= 2^2017. ( 8 - 1 )
= 2^2017. 7 chia hết cho 7
Vậy ( 2^200 - 2^2017) chia hết cho 7
tk cho mk nha $_$
:D
\(2^{2020}-2^{2017}\)
\(=2^{2017}.2^3-2^{2017}\)
\(=2^{2017}\left(2^3-1\right)\)
\(=2^{2017}.7⋮7\)
\(\Rightarrow2^{2020}-2^{2017}⋮7\)
Vậy \(2^{2020}-2^{2017}⋮7\)
Ta có:
2^2020 - 2^2017
= 2^2017. ( 2^3 - 1)
= 2^2017. ( 8 - 1 )
= 2^2017. 7 chia hết cho 7
Vậy ( 2^200 - 2^2017) chia hết cho 7