K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(A=x+y+\frac{6}{x}+2011\)

\(\Leftrightarrow3A=\left(x+3y\right)+\left(2x+\frac{18}{x}\right)+6033\)(1)

ta có \(x+3y\ge6\left(gt\right)\)(2)

        \(2x+\frac{18}{x}\ge2\sqrt{2x\cdot\frac{18}{x}}=2\cdot6=12\)( theo bất đẳng thức cô si cho các số dương)      (3)

từ (1), (2) và (3)

\(\Rightarrow3A\ge6+12+6033=6051\)

\(\Rightarrow A\ge2017\)

vậy min A=2017

\(\Leftrightarrow\hept{\begin{cases}x+3y=6\\2x=\frac{18}{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6-3y\\2x^2=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6-3y\\x^2=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6-3y\\x=3\end{cases}\Leftrightarrow\hept{\begin{cases}6-3y=3\\x=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=3\end{cases}}}}\)(vì x>0)

vậy ......

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

2 tháng 1 2021

mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không

 

20 tháng 11 2018

ai giúp mik câu này ik

30 tháng 3 2019

cai nay ban dung diem roi Cosi la duoc

NV
20 tháng 1 2021

\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

NV
26 tháng 3 2022

\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)

\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)

\(P_{min}=4\) khi \(x=y=1\)

16 tháng 6 2016

Khi 1 thì B = 5 do đó nếu ta chứng minh được B > 5 thì đây cũng chính là giá trị nhỏ nhất của B.

Viết B lại dưới dạng thuần nhất ta được : \(B=\frac{x}{z}+\frac{z}{y}+\frac{9y}{x+y+z}\)

Theo bất đẳng thức Cauchy-Schwarz: \(B\ge\frac{\left(x+z+3y\right)^2}{zx+yz+y\left(x+y+z\right)}\)

Cần chứng minh \(\left(x+z+3y\right)^2\ge5\left[zx+yz+y\left(x+y+z\right)\right]\)  (*)

Đã có x > y > z nên tồn tại 2 số thực m,n không âm sao cho m = a + z ; n = b + z

Thay m,n vào (*) ta được kết quả thu gọn là a2 + ab + 4b2 + 5bz > 0

Do đó P = 5 đạt GTNN

18 tháng 6 2016

Ta có : \(x\ge y\ge z\)\(\Rightarrow\frac{x}{z}\ge\frac{x}{y}\Rightarrow B\ge\frac{x}{y}+\frac{z}{y}+3y=\frac{3-y}{y}+3y=\frac{3}{y}+3y-1\ge2.\sqrt{\frac{3}{y}.3y}-1=5\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}\frac{x}{z}+\frac{z}{y}+3y=5\\x+y+z=3\\\frac{3}{y}=3y\end{cases}\)\(\Leftrightarrow x=y=z=1\)

Vậy Min B = 5 <=> x = y = z = 1.