K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

A = 31 + 32 +33 + 34 +.....+32015+ 32016

A = (31 + 32) +(33 + 34) +.....+ (32015+ 32016)

A = 3(1+3) + 32(1+3) + .....+ 32015(1+3)

A = 3.4 +32.4 +....... + 32015.4

A = 4(3 +32 +....+ 32015) chia hết cho 4

===================================================

A =31 + 32 +33 + 34 + 35 +36 +.....+32014 + 32015+ 32016

A = (31 + 32 +33 ) +(34 + 35 +36) +.....+ (32014 + 32015+ 32016)

A = 3(1+3+32) + 34(1+3+32) + .....+ 32014(1+3+32)

A = 3.13 +34.13 +....... + 32014.13

A = 13.(3 +34 +....+ 32014) chia hết cho 13

5 tháng 11 2023

\(A=3+3^2+...+3^{2016}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2015}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{2015}\right)\)

Vậy A chia hết cho 4

_____________

\(A=3+3^2+3^3+...+3^{2016}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2014}\cdot\left(1+3+9\right)\)

\(A=13\cdot\left(3+3^4+...+3^{2014}\right)\)

Vậy A chia hết cho 13

20 tháng 12 2017

A = 3 + 32 + 33 + 34 +..... + 32015 + 32016

= (3 + 32 + 33) + (34+ 35 + 36 ) +.....+  (32014 + 32015 + 32016)

= 3(1 + 3 + 32) + 34(1 + 3 + 32) + .....+ 32014(1 + 3 + 32)

= 13(3 + 34 + ....+ 32014)  \(⋮13\)

A = 3 + 32 + 33 + 34 +..... + 32015 + 32016

= (3 + 32) + (33 + 34) + .... + (32015 + 32016)

= 3(1 + 3) + 33(1 + 3) + .... + 32015(1 + 3)

= 4(3 + 33 + .... + 32015)     \(⋮4\)

21 tháng 12 2016

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32) + (33 + 34) + ... + (32015 + 32016)

A = 3(1 + 3) + 33(1 + 3) + ... + 32015(1 + 3)

A = 3.4 + 33.4 + ... + 32015.4

A = 4(3 + 33 + ... + 32015)

Vì 4(3 + 33 + ... + 32015) \(⋮\) 4 nên A \(⋮\) 4

Vậy A \(⋮\) 4

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32 + 33) + (34 + 35 + 36) + ... + (32014 + 32015 + 32016)

A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ... + 32014(1 + 3 + 32)

A = 3.13 + 34.13 + ... + 32014.13

A = 13(3 + 34 + ... + 32014)

Vì 13(3 + 34 + ... + 32014) \(⋮\) 13 nên A \(⋮\) 13

Vậy A \(⋮\) 13

21 tháng 12 2016

thanks

 

26 tháng 12 2018

*Chứng minh A chia hết cho 4

Ta có: \(A=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(=3^1.\left(1+3\right)+3^3\left(1+3\right)+...+3^{2015}\left(1+3\right)\)

\(=4\left(3^1+3^3+...+3^{2015}\right)⋮4^{\left(đpcm\right)}\)

*Chứng minh A chia hết cho 13

Ta có: \(A=\left(3^1+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(=3\left(1+3^1+3^2\right)+...+3^{2014}\left(1+3^1+3^2\right)\)

\(=13\left(3+...+3^{2014}\right)⋮13^{\left(đpcm\right)}\)

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

15 tháng 12 2017

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

 
 
 
 
 
14 tháng 10 2018

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

25 tháng 7 2018

\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)

\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)

\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)

\(B=2+2^2+2^3+...+2^{2016}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)

\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)

\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)

2 tháng 4 2022

giúp mình vshihi

 

2 tháng 4 2022

mình cần gấp

 

16 tháng 12 2015

=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^2012+3^2013+3^2014+3^2015)

=3(1+3+9+27)+3^5(1+3+9+27)+.....+3^2012(1+3+9+27)

=40(3+3^5+...+3^2012)

=>A chia hết cho 10