chứng minh rằng nếu m^2-n^2 là số nguyên tố thì m vàn là 2 số tự nhiên liên tiếp
Tổng của p số lẻ liên tiếp có phải là số nguyên tố ko (p lớn hơn hoặc =2)
cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta c/m rằng các số nguyên tố lớn hơn 3 luôn có dạng 6k+1, 6k+5, 6k-1.
- Số nguyên tố chia cho 6 sẽ có 1 trong các số dư là 0,1,2,3,4,5.
+ Vì số nguyên tố lẻ nên không chia hết cho 2=>không thể có dạng 6k, 6k+2, 6k+4. Mà số nguyên tố lớn 3 nên cũng không chia hết cho 3
=>Số nguyên tố cũng không thể có dạng 6k+3.
- Vậy số nguyên tố có dạng 6k+1, 6k+5.
- Ta thấy: 6k+5-6=6k-1
mà 6k+5-6=6(k-1)+5 luôn là số nguyên tố nên 6k-1 cũng là số nguyên tố.
=> Số nguyên tố sinh đôi luôn có 2 dạng là 6k+1 và 6k-1.
=> Số chính giữa 2 số nguyên tố sinh đôi có dạng 6k luôn chia hết cho 6.
gọi 2 số nguyên tố sinh đôi là n và n+2.vây sô tn nằm giữa 2 số đó la n+1
n là số nguyên tố lớn hơn 3 nên n lẻ.=> n chẵn=>n+1 chia hết cho 2
mặt khác n n+1 n+2 là 3 số tự nguyên liên tiếp .do n và n+2 không chia hết cho 3 nên n+1 phải chia hết cho 3
n+1 chia hết cho cả 2 và 3 nên n+1 chia hêt cho 6.vậy.....
2 số nguyên tố sinh đôi lớn hơn 3
Hai số đó chẵn (1)
=> Số giữa chẵn => Chia hết cho 2
Nếu số cuối chia 3 dư 1 (2) => Số nằm giữa chia hết cho 3
Từ (1) và (2) => Số ở giữa chia hết cho 2.3 = 6
Nếu số cuối chia 3 dư 2
=> Số thứ giữa chia 3 dư 1
=> Số thứ nhất chia hết cho 3 (lớn hơn 3)
Mà số thứ nhất là số nguyên tố => Loại
=> ĐPCM
1:
m^2-n^2=(m-n)(m+n)
Vì m+n>m-n và m^2-n^2 là số nguyên tố
nên m-n=1
=>m và n là hai số liên tiếp
2: Xét p số lẻ 2n+1;2n+3;...;2n+2p-1
Tổng là:
S=2n+1+2n+3+...+2n+2p-1
=p(2n+p)
=>S ko là số nguyên tố
1. thuộc P là thuộc gì ?
2. Có thể có có thể không, tùy vào p.
Giả sửa là stn lớn hơn 4 nằm giữa 2 snt sinh đôi
=> a là số chẵn => a chia hết cho 2
Mặt khác, vì trong 3 stn liên tiếp luôn có 1 số chia hết cho 3 nên a chia hết cho 3 ( vì số liền trước và liền sau là các snt >3 nên ko chia hết cho 3 )
Vậy a chia hết cho 2x3 hay a chia hết cho 6