Tìm \(x\in z\)biết:
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{^{ }x+11}=0\)
GIÚP MÌNH VỚI, ĐANG CẦN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (x-7)^x+11 - (x-7)^x+1 = 0 ( chuyển vế cho thành đẳng thức rồi chuyển lại) <=> (x-7)^x+1 [(x-7)^x+10 -1 ] = 0 <=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left[\left(x-7\right)^{x+10}-1\right]=0\end{cases}\Rightarrow\orbr{\orbr{\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{x+10}=1\end{cases}}}}}\) => x=7
xét x+10 lẻ => x-7=1 => x=8
tương tự với x+10 chẳn
\(.\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
Vậy : x=7
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Ta có : \(\left|x-1\right|+\left|x+5\right|+\left|2x-7\right|\)
\(=\left|x-1\right|+\left|x+5\right|+\left|7-2x\right|\)
\(\ge\left|x-1+x+5+7-2x\right|\)
\(=\left|11\right|=11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(7-2x\right)\ge0\)
Lập bảng xét dấu :
\(-5\) \(1\) \(\frac{7}{2}\)
\(x\) | | |
\(x-1\) | \(-\) \(0\) \(-\) | \(+\)
\(x+5\) \(0\)\(-\) | \(+\) | \(+\)
\(7-2x\) | \(+\) | \(+\) \(0\) \(-\)
\(\left(x-1\right)\left(x+5\right)\left(7-2x\right)\) \(0\) \(+\) \(0\) \(-\) \(0\) \(-\)
Vậy \(-5\le x\le1\)
Bài này hơi nâng cao nên phải sử dụng kiến thức ngoài để giải ngắn gọn hơn.
Em có thể lên mạng để tìm hiểu thêm về lập bảng xét dấu
\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
(x - 3)⁴ = (x - 3)²
(x - 3)⁴ - (x - 3)² = 0
(x - 3)².[(x - 3)² - 1] = 0
(x - 3)².(x² - 6x + 9 - 1) = 0
(x - 3)²(x² - 6x + 8) = 0
(x - 3)²(x² - 2x - 4x + 8) = 0
(x - 3)²[(x² - 2x) - (4x - 8)] = 0
(x - 3)²[x(x - 2) - 4(x - 2)] = 0
(x - 3)²(x - 2)(x - 4) = 0
(x - 3)² = 0 hoặc x - 2 = 0 hoặc x - 4 = 0
*) (x - 3)² = 0
x - 3 = 0
x = 3
*) x - 2 = 0
x = 2
*) x - 4 = 0
x = 4
Vậy x = 2; x = 3; x = 4
chua học ok ok :u 8]
Có trong sách bài tập nâng cao và một số chuyên đề toán 7 có