tìm ƯCLN ( 4.n+3; 2.n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯCLN\left(2n+3,n+4\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+3⋮d\\n+4⋮d\end{matrix}\right.\Leftrightarrow2\left(n+4\right)-2n-3⋮d\\ \Leftrightarrow5⋮d\)
Mà \(d\) lớn nhất nên \(d=5\)
Vậy \(ƯCLN\left(2n+3,n+4\right)=5\)
Gọi UCLN của hai số đó là d
Khi đó 14n+3 chia hết cho d và 21n + 4 chia hết cho d
<=>3.(14n+3) chia hết cho d và 2.(21n+4) chia hết cho d
=> 42n + 9 chia hết cho d và 42n + 8 chia hết cho d
=> (42n + 9) - (42n + 8) chia hết cho d =>d = 1
Vậy UCLN(14n + 3 ; 21n + 4) là 1
đặt UCLN của (14n+3, 21n+4) là d
suy ra: 14n+3 chia hết cho d và 21n+4chia hết cho d
suy ra: 42n +9 chia hết cho d và 42n+ 8 chia hết cho d
suy ra 1 chia hết cho d và d = 1
( CHÚ Ý: chữ suy ra bạn nên thay = dấu suy ra, chia hết cho thay = dấu chia hết)
Gọi UCLN(14n+3;21n+4)=d
ta có:14n+3 chia hết d (1)
21n+4 chia hết d (2)
(1)+(2)=>(21n+4)-(14n+3)=7n+1 chia hết d (3)
(3)=>2(7n+1)=14n+2 chia hết d (4)
(1)+(4)=>(14n+3)-(14n+2)=1 chia hết d
=> d=1
ai ko hiểu thì ? đừng t i c k sai nha!@
\(\text{Đặt }\left(14n+3,21n+4\right)=d\)
\(\Rightarrow\hept{\begin{cases}14n+3\\21n+4\end{cases}}⋮d\)
\(\Rightarrow\hept{\begin{cases}3\left(14n+3\right)\\2\left(21n+4\right)\end{cases}}⋮d\)
\(\Rightarrow\hept{\begin{cases}42n+9\\42n+8\end{cases}}⋮d\)
\(\Rightarrow42n+9-42n-8=1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
\(\Rightarrow\left(14n+3,21n+4\right)=1\)
Gọi d là ước chung lớn nhất của 14n+3 và 21n+4
\(\Leftrightarrow\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Gọi d = ƯCLN(2n + 3; 3n + 4)
⇒ (2n + 3) ⋮ d và (3n + 4) ⋮ d
*) (2n + 3) ⋮ d
⇒ 3(2n + 3) ⋮ d
⇒ (6n + 9) ⋮ d (1)
*) (3n + 4) ⋮ d
⇒ 2(3n + 4) ⋮ d
⇒ (6n + 8) ⋮ d (2)
Từ (1) và (2) suy ra:
(6n + 9 - 6n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy ƯCLN(2n + 3; 3n + 4) = 1
Gọi \(A=\left(21n+4,14n+3\right)\)
\(\Rightarrow21n+4⋮A\)
\(14n+3⋮A\)
\(\Rightarrow42n+8⋮A\)
\(42n+9⋮A\)
\(\Rightarrow42n+9-\left(42n+8\right)⋮A\)
\(\Leftrightarrow1⋮A\)
\(\Rightarrow A=1\)
Vậy \(\left(21n+4,24n+3\right)=1\)
Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:
4n+3 chia hết cho d
2n+3 chia hết cho d => 4n+6 chia hết cho d
=> 4n+6-(4n+3) chia hết cho d
=> 3 chia hết cho d
TH1: n chia hết cho 3
=> 4n+3 chia hết cho 3 và 2n+3 chia hết cho 3
=> ƯCLN(4n+3; 2n+3) = 3
TH2: n không chia hết cho 3
=> 4n+3 không chia hết cho 3 và 2n+3 không chia hết cho 3
=> ƯCLN(2n+3; 4n+3) = 1
Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:
4n+3 chia hết cho d
2n+3 chia hết cho d => 4n+6 chia hết cho d
=> 4n+6-(4n+3) chia hết cho d
=> 3 chia hết cho d
TH1: n chia hết cho 3
=> 4n+3 chia hết cho 3 và 2n+3 chia hết cho 3
=> ƯCLN(4n+3; 2n+3) = 3
TH2: n không chia hết cho 3
=> 4n+3 không chia hết cho 3 và 2n+3 không chia hết cho 3
=> ƯCLN(2n+3; 4n+3) = 1