K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

47659:9

26 tháng 5 2021

M giải luôn nha

\(\frac{1}{2}=\frac{x^2}{\left(y+1^2\right)}+\)\(\frac{y^2}{\left(x+1\right)^2}\) \(\ge\frac{2xy}{\left(x+1\right)\left(y+1\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\ge4xy\)

\(\Leftrightarrow3xy\le x+y+1\)

Dấu " = " xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}=\frac{y^2}{\left(x+1\right)^2}\\3xy=x+y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\\3x^2-2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=1\left(tm\right)\\x=y=-\frac{1}{3}\left(tm\right)\end{cases}}\)

Vậy ( x ; y ) ......