K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

áp dụng bất đẳng thức cô si ta có

(a+b)(b+c)(c+a) >= \(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{\left(abc\right)^2}=8abc\)

dấu = xảy ra <=> a=b=c

vậy (a+b)...=8abc <=> a=b=c

AH
Akai Haruma
Giáo viên
4 tháng 7 2020

Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:

$a+b\geq 2\sqrt{ab}$

$b+c\geq 2\sqrt{bc}$

$c+a\geq 2\sqrt{ca}$

Nhân theo vế thu được: $(a+b)(b+c)(c+a)\geq 8abc$

Dấu "=" xảy ra khi $a=b; b=c; c=a$ hay $a=b=c$ (đpcm)

7 tháng 1 2018

a) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

b) xy = 2 - y

xy + y = 2

y . ( x + 1 ) = 2

vì x,y thuộc Z nên ta có bảng sau :

x+112-1-2
y21-2-1
x01-2-3

Vậy ...

7 tháng 1 2018

Đề phải là cm a+b/b = c+d/d chứ bạn

Đk : b,d khác 0

Có : a/b=c/d

=> a/b + 1 = c/d + 1

=> a+b/b = c+d/d

=> ĐPCM

Tk mk nha

17 tháng 7 2015

cho hỏi ngu tý: nhân lại vs nhau sẽ đc vế pải: 8*(căn ab)*(căn bc)*(căn ac) thì biến đổi tiếp như nào?

21 tháng 1 2022

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)\(\Leftrightarrow a^2-ab-ac+ab-b^2-bc+ac-bc-c^2=a^2-ab+ac+ab-b^2+bc-ac+bc-c^2\)

\(\Leftrightarrow4bc=0\) \(\Leftrightarrow bc=0\)

\(\Rightarrow D=0\)