Tìm số tự nhiên n:
(\(n^2\)+ 1 ) \(⋮\)( n + 1 )
Giải hẳn ra nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=3+3^2+3^3+3^4...+3^11
=>3A-A=2A=3+3^2+3^3+3^4+...+3^11 - 1+3+3^2+3^3+...+3^1
=>2A=3^11-1
=>2A+1=3^n=3^11
=>n=11
k cho m nhé
A = 3 + 32 + 33 + ....... + 3100
3A = 32 + 33 + 34 + ..... + 3100 + 3101
3A - A = 32 + 33 + 34 + ...... + 3101 - ( 3 + 32 + 33 + ...... + 3100 )
Vậy khi đổi dấu trong ngoặc , các số trái dấu sẽ tự động đối nhau , nên ta có kết quả sau :
2A = 3101 - 3.
2A + 3 = 3n
=> 3101 + 3 - 3 = 3n
=> 3101 = 3n
=> n = 3100
sorry bai nay ko co trên google ^_^ hi hi
**** ba con cô bác
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=n(n+1)/2
=> yyy =n(n+1)/2
=> 2yyy =n(n+1)
Mặt khác yyy =y*111= y*3*37
=> n(n+1) =6y*37
Vế trái là tích 2 số tự nhiên liên tiếp
=> y*6 =36
=> y=6
(nêu y*6 =38 loại)
Vậy n=36, yyy=666
Tìm tất cả các số tự nhiên khác 0 để p/s \(\frac{n+4}{n-4}\)là phân số tối giản. Giải hẳn ra với nhé
a) bn tự lm
b) n + 2 chia hết cho n2 + 1
=> n.(n + 2) chia hết cho n2 + 1
=> n2 + 2n chia hết cho n2 + 1
=> n2 + 1 + 2n - 1 chia hết cho n2 + 1
Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)
Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)
=> 2.(n + 2) chia hết cho n2 + 1
=> 2n + 4 chia hết cho n2 + 1 (2)
Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1
=> 2n + 4 - 2n + 1 chia hết cho n2 + 1
=> 5 chia hết cho n2 + 1
Mà \(n\in N\) nên \(n^2+1\ge1\)
\(\Rightarrow n^2+1\in\left\{1;5\right\}\)
\(\Rightarrow n^2\in\left\{0;4\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Thử lại ta thấy trường hợp n = 2 không thỏa mãn
Vậy n = 0
c) bn tự lm
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
Tìm số tự nhiên n:
(n2+ 1 ) \(⋮\)( n + 1 )
Giải:Ta có:n2+1=n2-1+2=(n-1)(n+1)+2
Để n2+1 chia hết cho n+1 thì 2 chia hết cho n+1
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)
Vì \(n\ge0\) nên \(n+1\ge1\) nên \(n+1\in\left\{1,2\right\}\)
\(\Rightarrow n\in\left\{0,1\right\}\) thỏa mãn bài toán