cho biểu thức: P=3/x-3+6x/x^2-9+x/x+3
a, tìm điều kiện của x để giá trị của phân thức được xác định
b,rút gọn P
c, tính giá trị của P khi x=-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
\(x^2-3x\ne0\)
`<=>x(x-3)`\(\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
`b,`
đặt `A=(x^2-6x+9)/(x^2-3x)`
`A= ((x-3)^2)/(x(x-3))`
`A= (x-3)/x`
`c, `
để `x=5`
`=> A= (x -3)/x=(5-3)/5= 2/5`
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
a ĐKXĐ: x<>0; x<>3
b: Sửa đề; x^2-6x+9/x^2-3x
\(A=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
c: Khi x=5 thì \(A=\dfrac{5-3}{5}=\dfrac{2}{5}\)
Lời giải:
a.
ĐKXĐ: $x\neq \pm 2$
b.
\(P=\left[\frac{4(x-2)}{(x+2)(x-2)}+\frac{3(x+2)}{(x+2)(x-2)}-\frac{5x+2}{(x-2)(x+2)}\right].\frac{x+2}{2}\)
\(=\frac{4(x-2)+3(x+2)-(5x+2)}{(x-2)(x+2)}.\frac{x+2}{2}=\frac{2(x-2)}{(x-2)(x+2)}.\frac{x+2}{2}=1\)
a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c: Thay x=2 vào A, ta được:
\(A=\dfrac{2+1}{2-1}=3\)
d: Để A=2 thì x+1=2x-2
=>-x=-3
hay x=3(nhận)
bao thay Sang do
là sao