K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

a = 3 ; b = 2 ; c = 7 

Ta có : 

3 . 2 + 1 = 7 chia hết cho 7

2 . 7 + 1 = 15 chia hết cho 3

7 . 3 +1 = 22 chia hết cho 2

 

21 tháng 7 2015

bài này khó ................................................................

AH
Akai Haruma
Giáo viên
22 tháng 2 2023

Lời giải:

Đề thiếu điều kiện $a< b$ nữa bạn nhé.

Xét hiệu \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a(b+c)-b(a+c)}{b(b+c)}=\frac{c(a-b)}{b(b+c)}<0\) do $a,b,c$ là số tự nhiên khác 0, $a-b<0$ với $a<b$

$\Rightarrow \frac{a}{b}< \frac{a+c}{b+c}$

+) Xét trường hợp \(\dfrac{a}{b}>1\Rightarrow\) \(a>b\Rightarrow an>bn\) (do \(n\in\) N*)\(\Rightarrow an+ab>bn+ab\Rightarrow a.\left(b+n\right)>b.\left(a+n\right)\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)

+) Xét trường hợp \(\dfrac{a}{b}\le1\Rightarrow\)\(a\le b\Rightarrow an\le bn\) (do \(n\in\) N*)

\(\Rightarrow an+ab\le bn+ab\Rightarrow a.\left(b+n\right)\le b.\left(a+n\right)\Rightarrow\dfrac{a}{b}\le\dfrac{a+n}{b+n}\)

Vậy nếu \(\dfrac{a}{b}>1\) thì \(\dfrac{a}{b}>\dfrac{a+n}{b+n}\); nếu \(\dfrac{a}{b}\le1\) thì \(\dfrac{a}{b}\le\dfrac{a+n}{b+n}\).

6 tháng 6 2017

thank chị

haha

Câu 2: 

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I