cho a,,b,c Thuộc N; a,b,c>1 thoả mãn: ab+1 chia hết cho c; bc+1chia hết cho a; ca+1 chia hết cho b. hãy tìm 3 số a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đề thiếu điều kiện $a< b$ nữa bạn nhé.
Xét hiệu \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a(b+c)-b(a+c)}{b(b+c)}=\frac{c(a-b)}{b(b+c)}<0\) do $a,b,c$ là số tự nhiên khác 0, $a-b<0$ với $a<b$
$\Rightarrow \frac{a}{b}< \frac{a+c}{b+c}$
+) Xét trường hợp \(\dfrac{a}{b}>1\Rightarrow\) \(a>b\Rightarrow an>bn\) (do \(n\in\) N*)\(\Rightarrow an+ab>bn+ab\Rightarrow a.\left(b+n\right)>b.\left(a+n\right)\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
+) Xét trường hợp \(\dfrac{a}{b}\le1\Rightarrow\)\(a\le b\Rightarrow an\le bn\) (do \(n\in\) N*)
\(\Rightarrow an+ab\le bn+ab\Rightarrow a.\left(b+n\right)\le b.\left(a+n\right)\Rightarrow\dfrac{a}{b}\le\dfrac{a+n}{b+n}\)
Vậy nếu \(\dfrac{a}{b}>1\) thì \(\dfrac{a}{b}>\dfrac{a+n}{b+n}\); nếu \(\dfrac{a}{b}\le1\) thì \(\dfrac{a}{b}\le\dfrac{a+n}{b+n}\).
Câu 2:
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
a = 3 ; b = 2 ; c = 7
Ta có :
3 . 2 + 1 = 7 chia hết cho 7
2 . 7 + 1 = 15 chia hết cho 3
7 . 3 +1 = 22 chia hết cho 2
bài này khó ................................................................