K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

Ta có : \(\left(x^2-y^2\right)^{1999}=\left[\left(x-y\right)\left(x+y\right)\right]^{1999}\)

\(=\left(x+y\right)^{1999}\cdot\left(x-y\right)^{1999}\) (đpcm) 

9 tháng 9 2020

               Bài làm :

Ta có :

 \(\left(x^2-y^2\right)^{1999}\)

\(=\left[\left(x+y\right)\left(x-y\right)\right]^{1999}\)

\(=\left(x+y\right)^{1999}.\left(x-y\right)^{1999}\)

=> Điều phải chứng minh

15 tháng 6 2019

Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.

Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.

Mà 1999 chia 8 dư 7 

Suy ra phương trình không có nghiệm nguyên

J
28 tháng 5 2017

Ta có :

VT : x2; y2 chia cho 4 dư 0 ; 1 => x+ y2 chia cho 4 dư 0 ; 1 ; 2 (1)

VP : 1999 chia cho 4 dư 3 (2)

Từ (1) và (2) => PT đã cho vô nghiệm

thank you very much~~~~

10 tháng 3 2020

1, Ta có: \(x^2-y^2=1998\Leftrightarrow\left(x-y\right)\left(x+y\right)=1998⋮2\Rightarrow\left(x-y\right)\left(x+y\right)⋮2\)

mà \(\left(x-y\right)+\left(x+y\right)=2y⋮2\Rightarrow x-y,x+y\)cùng tính chẵn lẻ suy ra \(x-y,x+y\)cùng chẵn

\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\Rightarrow1998⋮4\)(vô lí) suy ra không tồn tại

2, gt => x,y khác tính chẵn lẻ. Giả sử x chẵn, y lẻ suy ra \(x=2k,y=2m+1\left(k,m\inℤ\right)\)

Khi đó: \(\left(2k\right)^2+\left(2m+1\right)^2=1999\Leftrightarrow4k^2+4m^2+4m+1=1999\Leftrightarrow1998=4\left(k^2+m^2+m\right)⋮4\)

\(\Rightarrow1998⋮4\)(vô lí) suy ra không tồn tại 

10 tháng 3 2020

Thanks bn iu!!!