K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

a) vì \(AC\)VÀ \(CM\)LÀ 2 TIẾP TUYẾN CẮT NHAU TẠI \(C\)CỦA ĐƯỜNG TRÒN \(\left(O\right)\)NÊN TA CÓ

  -   \(CO\)LÀ TIA PHÂN GIÁC \(\widehat{ACM}\)               ( TÍCH CHẤT 

  -  \(OC\)LÀ TIA PHÂN GIÁC \(\widehat{AOM}\)             2 TIẾP TUYẾN 

  -  \(AC=CM\)                                                           CẮT NHAU )

\(\Rightarrow\widehat{AOC}=\widehat{MOC}\)

C/M TƯƠNG TỰ TA CÓ  \(\widehat{MOD}=\widehat{BOD}\)

+ TA CÓ: \(\widehat{AOC}+\widehat{MOC}+\widehat{MOD}+\widehat{BOD}=180^0\)

\(\Leftrightarrow2\widehat{COM}+2\widehat{MOD}=180^0\)

\(\Leftrightarrow2.\left(\widehat{COM}+\widehat{MOD}\right)=180^0\)

\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)

HAY \(\widehat{COD}=90^0\)

VẬY \(\widehat{COD}=90^0\)

B) XÉT \(\Delta AOM\)CÓ : \(AO=OM\)( BÁN KÍNH ĐƯỜNG TRÒN TÂM O )

\(\Rightarrow\Delta AOM\)LÀ \(\Delta\)CÂN TẠI O

MÀ \(\widehat{AOI}=\widehat{MOI}\)( TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU )

\(\Rightarrow OI\)LÀ TIA PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG CAO TRONG \(\Delta\) CÂN \(AOM\)

\(\Rightarrow OI\perp AM\)TẠI  \(I\)

\(\Rightarrow\widehat{MIO}=90^0\)

C/M TƯƠNG TỰ TA CÓ: \(MK\perp OK\)

\(\Rightarrow\widehat{OKM}=90^0\)

THEO CÂU A) TA CÓ: \(\widehat{COD}=90^0\)

XÉT TỨ GIÁC \(OIMK\) CÓ 3 GÓC VUÔNG \(\Rightarrow\)TỨ GIÁC \(OIMK\)LÀ HÌNH CHỮ NHẬT

VẬY T/G \(OIMK\)LÀ HCN

C) TA CÓ: \(AC=CM\)( TÍNH CHẤT 2 TIẾP TUYẾN ....)

TƯƠNG TỰ \(MD=BD\)

KHI ĐÓ: \(AC.BD\) 

\(=CM.MD\)

\(OM\perp CM\)\(CM\)LÀ TIẾP TUYẾN TẠI M )

ÁP DỤNG HỆ THỨC GIỮA CẠNH VÀ ĐƯỜNG CAO VÀO \(\Delta COD\)VUÔGN TẠI \(O\), ĐƯỜNG CAO \(OM\)TA CÓ 

\(CM.MD=MO^2\)

\(\Rightarrow CM.MD=R^2\)  ( VÌ \(MO\)LÀ BÁN KÍNH)

HAY \(AC.BD=R^2\)  MÀ \(R\)KHÔNG ĐỔI

\(\Rightarrow AC.BD\)KO ĐỔI KHI \(C\)DI CHUYỂN TRÊN \(Ax\)

D) VẼ \(I\)LÀ TRUNG ĐIỂM CỦA \(CD\), NỐI \(O\)VỚI \(I\)

\(AC\perp AB\) ( AC LÀ TIẾP TUYẾN TẠI A )

\(BD\perp AB\)( BD LÀ TIẾP TUYẾN TẠI B)

\(\Rightarrow AC\)SONG SONG \(BD\)( CÙNG VUÔNG GOC VỚI AB  )

\(\Rightarrow\)T/G \(ACDB\)LÀ HÌNH THANG

XÉT HÌNH THANG \(ACDB\)

CÓ \(CI=DI\)

\(AO=OB\)

\(\Rightarrow OI\)SONG SONG \(AC\)

MÀ \(AC\perp AB\)

\(\Rightarrow OI\perp AB\)  ( 1 ) 

\(MC=MD=\frac{1}{2}CD\)

XÉT \(\Delta\)VUÔNG \(COD\)CÓ   \(OI\)LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN \(CD\)

VÀ \(OI=\frac{1}{2}CD\)

\(\Rightarrow OM=MC=MD\)

\(\Rightarrow M\)CÁCH ĐỀU 3 ĐIỂM \(O,C,D\)

\(\Rightarrow M\in\left(I;\frac{CD}{2}\right)\)  ( 2 ) 

TỪ ( 1 ) VÀ ( 2 ) TA CÓ: \(AB\)LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN ĐƯỜNG KÍNH CD

28 tháng 5 2021

CHO NỬA ĐƯỜNG TRÒN (O;R) ĐƯỜNG KÍNH AB. TỪ A VÀ B KẺ HAI TIẾP TUYẾN AX VÀ BY VỚI NỬA ĐƯỜNG TRÒN . QUA ĐIỂM M BẤT KÌ THUỘC NỬA ĐƯỜNG TRÒN KẺ TIẾP TUYẾN THỨ BA CẮT AX ,BY LẦN LƯỢT TẠI E VÀ F . NỐI AM CẮT OE TẠI P, NỐI BM CẮT OF TẠI Q. HẠ MH VUÔNG GÓC VỚI AB TẠI HA, CHỨNG MINH…

 

25 tháng 12 2021

b: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: MN=MC+NC

nên MN=MA+NB