a=5/2*4+5/4*6+...+5/48*50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = - ( 5 - 6 ) - ( 3 - 4 + 5 - 7 )
A = -5 + 6 - 3 + 4 - 5 + 7
A = ( 6 + 4 ) + ( -5 + (-5) ) + ( -3 + 7 )
A = 10 + (-10) + 4
A = 0 + 4
A = 4
P = ( 1 + 3 + 5 + ... + 47 + 49 ) - ( 2 + 4 + 6 + ... + 48 + 50 )
P = \(\frac{\left(1+49\right)\cdot\left(\left(49-1\right):2+1\right)}{2}\) - \(\frac{\left(2+50\right)\cdot\left(\left(50-2\right):2+1\right)}{2}\)
P = \(625-650\)
P = \(-25\)
Dat bieu thuc tren la A
2A=10/2.4+10/4.6+10/6.8+...+10/48.50
2A=5.(2/2.4+2/4.6+2/6.8+...+2/48.50)
2A=5.(1/2-1/4+1/4-1/6+1/6-1/8+..+1/48-1/50)
2A=5.(1/2-1/50)
2A=5.12/25
2A=12/5
A=12/5:2
A=12/5.1/2
A=6/5
= 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + ...... + 1/48 - 1/50)
= 5/2 . ( 1/2 - 1/50)
= 5/2 . 12.25
=6/5
25C=5^52-5^50+5^48-5^46+...+5^8-5^6+5^4-5^2
=>26C=5^52-1
=>\(C=\dfrac{5^{52}-1}{26}\)
Làm kiểu 11:
Đây là tổng CSN với \(u_1=-1\) ; \(q=-5^2\)
Có tổng cộng \(\frac{50-0}{2}+1=26\) số hạng
Vậy \(S_n=u_1.\frac{q^n-1}{q-1}=-1.\frac{\left(-5^2\right)^{26}-1}{-5^2-1}=\frac{5^{52}-1}{26}\)
Làm kiểu lớp 6:
\(A=5^{50}-5^{48}+5^{46}+...+5^2-1\)
\(5^2A=25A=5^{52}-5^{50}+5^{48}+...+5^4-5^2\)
\(26A=5^{52}-1\Rightarrow A=\frac{5^{52}-1}{26}\)
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
\(A=\frac{5}{2\times4}+\frac{5}{4\times6}+.....+\frac{5}{48\times50}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{5}\left(\frac{5}{2\times4}+\frac{5}{4\times6}+.....+\frac{5}{48\times50}\right)\)
\(\Rightarrow\frac{2}{5}A=\frac{2.5}{5.\left(2\times4\right)}+\frac{2.5}{5.\left(4\times6\right)}+.....+\frac{2.5}{5.\left(48\times50\right)}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{\left(2\times4\right)}+\frac{2}{\left(4\times6\right)}+.....+\frac{2}{\left(48\times50\right)}\)
\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\)
\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{50}\)
\(\Rightarrow\frac{2}{5}A=\frac{24}{50}\)
\(\Rightarrow A=\frac{24}{50}:\frac{2}{5}=\frac{24}{50}\times\frac{5}{2}=\frac{6}{5}\)