Chứng minh x2-2x+2>0 với mọi số thực x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2-4xy+4y^2+3\)
\(=\left(x-2y\right)^2+3\)
Do \(\left(x-2y\right)^2\ge0\forall x,y\)
\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)
\(\left(x-2y\right)^2+3>0\forall x,y\)
=> Đpcm
b)\(2x-2x^2-1\)
\(=-x^2-x^2+2x-1\)
\(=-x^2-\left(x-1\right)^2\)
\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)
=> đpcm
Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.
Chúc bạn học tốt!^^
sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT
Bài 1:
Ta có:
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có:
\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)
\(\Rightarrow4x-x^2-5< 0\)
Ta có : \(x^2+y^2-2x-2y+2017\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+2015\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+2015\)
Vì : \(\left(x-1\right)^2\ge0\forall x\in R\) ; \(\left(y-1\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-1\right)^2+\left(y-1\right)^2+2015\ge0+0+2015=2015>0\forall x\in R\)
Vậy \(x^2+y^2-2x-2y+2017\ge0\forall x\in R\)
a) Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
hay \(x^2-x+1>0\forall x\)(đpcm)
b) Ta có: \(-x^2+2x-4=-\left(x^2-2x+4\right)=-\left(x^2-2x+1+3\right)=-\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3< 0\forall x\)
hay \(-x^2+2x-4< 0\forall x\)(đpcm)
Ta có
\(x^2+y^2-2x-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=\)
\(\left(x-1\right)^2+\left(y-2\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) >0 => đpcm
1, 2x2-6x+1=0
\(\Leftrightarrow\) 2(x2-3x+\(\dfrac{1}{2}\))=0
\(\Leftrightarrow\)x2-3x+\(\dfrac{1}{2}\)=0(vì 2 \(\ne\) 0)
\(\Leftrightarrow\)x2-2.\(\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{1}{2}-\dfrac{9}{4}\)=0
\(\Leftrightarrow\)(x-\(\dfrac{3}{2}\))2-\(\dfrac{7}{4}\)=0
\(\Leftrightarrow\)(x-\(\dfrac{3+\sqrt{7}}{2}\))(x-\(\dfrac{3-\sqrt{7}}{2}\))=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)
Vậy tập nghiệm bạn tự giải nhé
2a, -x2+4x-9\(\le\)5
\(\Leftrightarrow\)-x2+4x-4\(\le\)0
\(\Leftrightarrow\)-(x-2)2\(\le\)0
\(\Leftrightarrow\)(x-2)2\(\ge\)0 đúng \(\forall\) x
Vậy dfcm
a ) Đề sai
b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)
c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
Có : x^2-2x+2 = (x^2-2x+1)+1 = (x-1)^2 + 1
Vì (x-1)^2 >= 0 nên (x-1)^2 + 1 > 0
=> ĐPCM
k mk nha
Đây là Kết quả của mình
Ta có \(x^2\ge2x\)( dấu '=' chỉ xảy ra khi và chỉ khi x=2)
Ta có \(x^2\ge0\)( dấu '=' chỉ xảy ra khi và chỉ khi x=0)
Suy ra \(x^2\ge2x\ge0\)(1)
Mà ta có \(x^2-2x+2\)Nhận thấy \(2>0\)(2)
Từ (1) và (2) có \(x^2-2x+2>0\)
Vậy \(x^2-2x+2>0\)