Cho \(\frac{a}{c}=\frac{c}{b}\),với a,b,c khác 0.CMR:\(\frac{b-a}{a}=\frac{b^2-a^2}{a^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=x;\frac{b}{c}=y;\frac{c}{a}=z\)
\(\Rightarrow xyz=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}=1\)
Bất đẳng thức đã cho tương đương với: \(\Leftrightarrow x^2+y^2+z^2\ge\frac{z}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)-2.\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\left(\forall x;y;z\right)\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z\Rightarrow a=b=c\left(đpcm\right)\)
Có \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
Thay x,y lần lượt là các cặp \(\left(\frac{a}{b};\frac{b}{c}\right);\left(\frac{b}{c};\frac{c}{a}\right);\left(\frac{c}{a};\frac{a}{b}\right)\) ta được \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{a}{c}\) \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\) \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\)
Cộng lại ta có \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Dấu = xảy ra khi a=b=c
Xét \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{a+b+c}{abc}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)(đpcm)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2+b^2}{ab}=\frac{c^2+d^2}{cd}\)
=> \(\frac{a^2}{ab}+\frac{b^2}{ab}=\frac{c^2}{cd}+\frac{d^2}{cd}\)
=> \(\frac{a}{b}+\frac{b}{a}=\frac{c}{d}+\frac{d}{c}\)
Mình chỉ làm được tới khúc này
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ (1) và (2) suy ra:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
Trường hợp 1: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
Từ (3) và (4) suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Trường hợp 2: \(\frac{a+b}{c+d}=\frac{-\left(a-b\right)}{c-d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ (5) và (6) suy ra \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)