K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

Tách 2^999(2^9)^111

rồi suy ra theo mod 100

27 tháng 11 2016

Đặt hai biểu thức trên là A và B ta có:

b)  A = 31989 = 81497.3 có chữ số tận cùng là 1.3 = 3.

a) B = 2999 + 32999 = 16249 . 8 ( có chữ số tận cùng là 8 ) + 81749 . 27 ( có chữ số tận cùng là 7 ). Vậy B có chữ số tận cùng là 5.

29 tháng 3 2020

a, 2999 = 2249.4+3=2249.4 . 23 = (.....6).8=(........8). Vậy 2999 có chữ số tận cùng là 8

b, 3999=3249.4+3=3249.4.33=(......1) . (....7) =(....7) . Vậy 3999 có chữ số tận cùng là 7

10 tháng 11 2015

2999 = ( 24 )249 + 3 = ( ...6 )249 . 23 = ( ....6) . (....8) = ( ...48)

3999 = (34 )294 + 3 = (....1)249 . 33 = (...1) . ( ....7) = (....7)

17 tháng 4 2017

2^10 = 1024 => 2^10 đồng dư 24 modun 100 
=> 2^50 đồng dư 24^5 theo modun 100 
mà 24^5 =7962624 đồng dư 24 theo modun 100 
=> 2^50 đồng dư 24 modun 100 
=> 2^100 đồng dư 24^2 =576 đồng dư 76 modun 100 
vậy 2 chữ số tận cùng của 2^100 là 76 :-) 

17 tháng 4 2017

2100=(220)5=(....76)5=(....76)

Vậy chữ số tận cùng là 6

- Ủng hộ -

~minhanh~

là số 192 nha bạn 

mình ngồi bấm máy đó mình ko biết đồng thức dư là gì 

chúc bạn học tốt nha

31 tháng 12 2015

ko bit , do dien , ro 

10 tháng 1 2016

2999 = 2996.23

Cách 1: 2996 = (...6).8 = (...8)

cách 2: 2^996 đồng dư với 6 (mod 10)

2^3 đồng dư với 8 (mod 10)

=> 2^996.2^3 đồng dư với 8 (modul 10)

22 tháng 4 2016

Mình không biết dùng đồng dư thức nhưng cách này cũng tương tự:

\(3^{100}=\left(3^4\right)^{25}=\left(...1\right)^{25}=\left(...1\right)\)

Vậy 3100 tận cùng là 1

22 tháng 4 2016

\(3^{20}\)có tận cùng là 01.

\(3^{100}=\left(3^{20}\right)^5=\left(...01\right)^5=\left(...01\right)\)

Vậy 2 chữ số đó là 01