phân tích đa thức thành nhân tử:
a/ \(x^2\)- \(2x\)+\(5y^2\)
b/ \(x^2\)-\(6xy\)+\(13y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)7x^3y^2+14x^2y^3+7xy^4`
`=7xy^2(x^2+2xy+y^2)`
`=7xy^2(x+y)^2`
______________________________________________
`b)x^2-xy+5x-5y`
`=x(x-y)+5(x-y)`
`=(x-y)(x+5)`
______________________________________________
`c)3x^2-6xy-12+3y^2`
`=3(x^2-2xy-4+y^2)`
`=3[(x-y)^2-4]`
`=3(x-y-2)(x-y+2)`
a)7x3y2+14x2y3+7xy4
=7xy2(x2+2xy+y2)
=7xy2(x+y)2
b)x2-xy + 5x - 5y
=x(x-y) + 5(x-y)
=(x-y) (x+5)
a: \(=\dfrac{2}{5}\left(xy-x-y^2+1\right)\)
\(=\dfrac{2}{5}\left[x\left(y-1\right)-\left(y-1\right)\left(y+1\right)\right]\)
\(=\dfrac{2}{5}\left(y-1\right)\left(x-y-1\right)\)
b: \(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
\(a,2x\left(x-3\right)\\ b,x^2-\left(y+1\right)^2\\ =\left(x-y-1\right)\left(x+y+1\right)\)
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`
`#\text {Kr.Ryo}`
`a)`
`4x^2 - 4x + 1`
`= (2x)^2 - 2*2x*1 + 1^2`
`= (2x - 1)^2`
`b)`
Xem lại đề
`c)`
`2x^2 + 7x + 5`
`= 2x^2 + 2x + 5x + 5`
`= (2x^2 + 2x) + (5x + 5)`
`= 2x(x + 1) + 5(x + 1)`
`= (2x + 5)(x + 1)`
`d)`
`x^2 - 6xy - 25z^2 + 9y^2`
`= (x^2 - 6xy + 9y^2) - 25z^2`
`= [ (x)^2 - 2*x*3y + (3y)^2] - (5z)^2`
`= (x + 3y)^2 - (5z)^2`
`= (x + 3y - 5z)(x + 3y + 5z)`
\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt \(t=x^2+5x+4\)
(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)
Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)
a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)
\(=\left(x+15\right)\left(3x-4\right)\)