Tìm x, biết: a) (x - 2) . (x + 3) > 0
b) (2x - 1) . (-x + 1) > 0
c) (x + 1) . (3x - 6) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn phân tích biểu thức thành nhân tử rồi xét :
Nếu >0 thì các nhân tử phải cùng âm hoặc dương
nếu <0 thì các nhân tử trái dấu
tương tự như phân số
nếu >0 thì tử và mẫu cùng dấu
nếu <0 thì trái dấu
:) chúc bạn làm tốt nha dễ mà


a) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
Ta có \(x^2+1\ge1>0\forall x\)
Để bpt < 0 => 2x( 3x - 5 ) < 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\Rightarrow}0< x< \frac{5}{3}\)
2. \(\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)( loại )
Vậy nghiệm của bất phương trình là 0 < x < 5/3
b) \(\frac{x}{x-2}+\frac{x+2}{x}>2\)( ĐKXĐ : \(x\ne0,x\ne2\))
<=> \(\frac{x}{x-2}+\frac{x+2}{x}-2>0\)
<=> \(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
<=> \(\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
<=> \(\frac{4x-4}{x\left(x-2\right)}>0\)
\(x\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)
\(x\left(x-2\right)< 0\Leftrightarrow0< x< 2\)
Xét các trường hợp
1/ \(\hept{\begin{cases}4x-4>0\\x\left(x-2\right)>0\end{cases}}\)
+) \(\hept{\begin{cases}4x-4>0\\x>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\Leftrightarrow x>2\)
+) \(\hept{\begin{cases}4x-4>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}4x-4< 0\\x\left(x-2\right)< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Rightarrow0< x< 1\)
Vậy nghiệm của bất phương trình là x > 2 hoặc 0 < x < 1
c) \(\frac{2x-3}{x+5}\ge3\)( ĐKXĐ : \(x\ne-5\))
\(\Leftrightarrow\frac{2x-3}{x+5}-3\ge0\)
\(\Leftrightarrow\frac{2x-3}{x+5}-\frac{3\left(x+5\right)}{\left(x+5\right)}\ge0\)
\(\Leftrightarrow\frac{2x-3-3x-15}{x+5}\ge0\)
\(\Leftrightarrow\frac{-x-18}{x+5}\ge0\)
Xét hai trường hợp
1/ \(\hept{\begin{cases}-x-18\ge0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-18\\x>-5\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}-x-18\le0\\x+5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-18\\x< -5\end{cases}}\Leftrightarrow-18\le x< -5\)
Vậy nghiệm của bất phương trình là \(-18\le x< -5\)
d) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-1}{x-3}-1>0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}>0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3


a: (x-2)(x+3)>0
TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)
TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)
=>x<-3
b: (2x-1)(-x+1)>0
=>(2x-1)(x-1)<0
TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)
=>\(\frac12
TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)
=>x∈∅
c: (x+1)(3x-6)<0
=>3(x+1)(x-2)<0
=>(x+1)(x-2)<0
TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1
TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)
=>x∈∅