K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà B,H,C thẳng hàng(gt)

nên H là trung điểm của BC(Đpcm)

b) Xét ΔAMB và ΔCME có 

\(\widehat{AMB}=\widehat{CME}\)(hai góc đối đỉnh)

MA=MC(M là trung điểm của AC)

\(\widehat{BAM}=\widehat{ECM}\)(hai góc so le trong, AB//CE)

Do đó: ΔAMB=ΔCME(g-c-g)

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(M là trung điểm của AC)

AH là đường trung tuyến ứng với cạnh BC(H là trung điểm của BC)

BM cắt AH tại I(gt)

Do đó: I là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

27 tháng 4 2021

ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

27 tháng 4 2021

mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung

27 tháng 8 2021

a, Xét \(\Delta ABH\)và \(\Delta ACH\)ta có :

AB = AC ( gt )

\(H=90^o\)

AH cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)

b, Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)

\(\Rightarrow BH=CH\)(2 cạnh t/ung)

\(\Rightarrow\)H là trung điểm BC

\(\Rightarrow AH\)là đường trung tuyến của \(\Delta ABC\)

Mà G là giao điểm của 2 đường trung tuyến AH và BM 

Suy ra : G là trọng tâm của \(\Delta ABC\)

c, Áp dụng định lý Pytago cho \(\Delta ABH\)vuông tại H ta có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2+18^2=30^2\)

\(=AH^2=30^2-18^2\)

\(\Rightarrow AH^2=576\)

\(\Rightarrow AH=\sqrt{576}=24\)

Ta có : \(AG=\frac{2}{3}AH\)

\(\Rightarrow AG=\frac{2}{3}\cdot24\)

\(\Rightarrow AG=16\)

d, Xét \(\Delta ABC\)có H là trung điểm BC . Mà \(DH\perp AC\)( gt )

\(\Rightarrow\)D là trung điểm AB ( t/c đường trung bình của tam giác )

Xét \(\Delta ABC\)có CG là trung tuyến

Mà CD là trung truyến

=> CD và CG trùng nhau 

=> C,G,D thẳng hàng ( đpcm ) 

27 tháng 8 2021

A B C H M G D

7 tháng 6 2021

A) Trong TG cân, đường vuông góc xuất phát từ đỉnh cân đồng thời là đường trung tuyến, trung trực, phân giác

b) TG AMC = TG CME (g.c.g : AM= MC trung điểm; Góc AMB= góc CME đối đỉnh ; góc MCE = góc BAM so le trong)

c) I nằm trên trung điểm BC và trung điểm AC

D) 

Ta có: BM=ME ( TG AMC= TG CME)

=> BE = 2 BM 

 mà BI =2/3 BM ( I là trọng tâm)

=> BI= 1/3 BE

=> 3 BI = BE 

Xét TG AEB, ta có :

BE < AB+ AE ( Bất đẳng thức trong TG)

mà BE= 3 BI( cmt)

=> 3 BI< AB + AE