cho n thuộc z .chứng minh rằng :n mủ 2 chia cho 3 dư 0 hoặc 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Bài 1
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
Bài 3
n 2 + 3n - 13 chia hết cho n + 3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 thuộc Ư(13)={-1;1;-13;13}
=>n thuộc{-4;-2;-16;10}
n 2 + 3 chia hết cho n - 1
ta có: n-1 chia hết cho n-1
=>(n-1)(n+1) chia hết cho n-1
=>n^2+n-n-1 chia hết cho n-1
=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1
=>(n^2+3)-(n^2-1) chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}
=> n thuộc {0;2;-1;3;-3
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
Câu 2:
TH1: n=2k
=>A=2k(2k+13) chia hết cho 2
TH2: n=2k+1
=>A=(2k+1)(2k+14)=2(k+7)(2k+1) chia hết cho 2
Nếu n chia hết cho 3 thì n^2 chia 3 dư 0.
Nếu n chia 3 dư 1 : n = 3k + 1 nên n^2 = (3k + 1)^2 = 9k^2 +6k + 1 : chia 3 dư 1
Nếu n chia 3 dư 2 : n = (3k + 2) nên n^2 = (3k + 2)^2 = 9k^2 + 12K + 4 = 9k^2 + 12k + 3 + 1: chia 3 dư 1 (k là số tự nhiên)
Vậy n thuộc Z thì n^2 chia 3 dư 0 hoặc dư 1
Ta xét 3 TH :
TH1 : n chia hết cho 3 thì biểu thức trên luôn đúng
TH2: \(n=3k+1\)
\(\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1=3\left(3k^2+2k\right)+1\)
Vậy n2 chia 3 dư 1
TH3 :\(n=3k+2\)
\(n^2=\left(3k+2\right)^2=9k^2+12k+4=3\left(3k^2+4k\right)+4\)
Mà 4 chia 3 dư 1 nên n2 chia 3 dư 1
Ta có đpcm