(1/1⋅2⋅3+1/2⋅3⋅4+⋯+1/8⋅9⋅10)⋅x=2000/2002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$

S1=1+(-2)+...+2001+(-2002)
Có:(2002-1):1+1=2002(số)
S1=(1+(-2))+...+(2001+(-2002))
S1=(-1)+...+(-1)
Có:2002:2=1001(số)
=>S1=(-1).1001
=>S1=-1001
nhóm âm vào âm.dương vào dương
hoặc nhóm số đầu với số cuối số 2 với số kế cuối

\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\ldots+\frac{1}{8.9.10}\right).x=\frac{2000}{2002}\)
\(2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\cdots+\frac{1}{8.9.10}\right).x=\frac{4000}{2002}\)
\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\cdots+\frac{2}{8.9.10}\right).x=\frac{2000}{1001}\)
\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\cdots+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{2000}{1001}\)
\(\left(\frac12-\frac{1}{90}\right).x=\frac{2000}{1001}\)
\(\frac{22}{45}.x=\frac{2000}{1001}\)
\(x=\frac{2000}{1001}:\frac{22}{45}\)
\(x=\frac{45000}{11011}\)
**Trả lời:
Đề bài: \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdots+\frac{1}{8\cdot9\cdot10}\right)\cdot x=\frac{2000}{2002}\).
Giải:
+ Ta có: \(\frac{11}{45} \cdot x = \frac{2000}{2002} = \frac{1000}{1001}\) \(x = \frac{1000}{1001} : \frac{11}{45} = \frac{1000}{1001} \cdot \frac{45}{11} = \frac{45000}{11011}\) + Vậy \(x = \frac{45000}{11011}\).+ Ta xét tổng \(A=\frac{1}{1 \cdot2 \cdot3}+\frac{1}{2 \cdot3 \cdot4}+\ldots+\frac{1}{8 \cdot9 \cdot10}\).
+ Ta có công thức tổng quát: \(\frac{1}{n \left(\right. n + 1 \left.\right) \left(\right. n + 2 \left.\right)} = \frac{1}{2} \left(\right. \frac{1}{n \left(\right. n + 1 \left.\right)} - \frac{1}{\left(\right. n + 1 \left.\right) \left(\right. n + 2 \left.\right)} \left.\right)\)
+ Áp dụng công thức này, ta có:
\(A=\frac{1}{2}\left(\right.\frac{1}{1 \cdot2}-\frac{1}{2 \cdot3}+\frac{1}{2 \cdot3}-\frac{1}{3 \cdot4}+\ldots+\frac{1}{8 \cdot9}-\frac{1}{9 \cdot10}\left.\right)\)
\(A = \frac{1}{2} \left(\right. \frac{1}{1 \cdot 2} - \frac{1}{9 \cdot 10} \left.\right) = \frac{1}{2} \left(\right. \frac{1}{2} - \frac{1}{90} \left.\right) = \frac{1}{2} \left(\right. \frac{45}{90} - \frac{1}{90} \left.\right) = \frac{1}{2} \cdot \frac{44}{90} = \frac{22}{90} = \frac{11}{45}\)
\(\Rightarrow A=\frac{11}{45}\).