Chứng tỏ rằng abc+bca+cab chia hết cho 111
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có : abc + cba +cab : hết 111
100 a +10b+1c+100b+10c+1a+100c+10b+1a
=(100 a +10b+1c) + (100b+10c+1a) + ( 100c+10b+1a )
= 111 abc + 111bca+111cab : hết 111
= 111 . ( abc + bca + cab ) : hết 111
vậy , abc + bca + cab : hết cho 111
mất rất nhìu thời gian TT TT
Tham khảo câu hỏi tương tự nha bạn
CHÚC BẠN HỌC TỐT NHA !
Ta có:
abc + bca + cab
= 111a + 111b + 111c
= 111.(a + b + c)
=37.3.(a+b+c)
=> abc+bca+cab chia hết cho 37
Vậy....
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111(a + b + c)
= 3.37(a + b + c) ⋮ 3
Vậy (abc + bca + cab) ⋮ 3
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)
= 111a + 111b + 111c
= 111(a + b + c)
= 37.3(a + b + c) \(⋮\) 37 (đpcm)
ta có:abc+bca+cab=111.a
Vi 111 chia het cho 7 nen abc+bac+cab
k đ nha
a; Vì Ư(111)={1;3;37;111} nên 111 ko phải số nguyên tố
A=abc +bca+cab
A=a x100+bx10+c+b x100+c x10+a +c x100+a x10+b
A=a x111+b x111+c x111
A=111 x(a+b+c)
A=37 x3 x(a+b+c) : hết cho 37
tick nha nhanh nhất nè
mà đây là toán 6 mà
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
Ta có:
abc = a100 + b10 + c
bca = b100 + c10 + a
cab = c100 + a10 + b
=> abc + bca + cab = (a100 + b100 + c100) + (b10 + c10 + a10) + (c + a + b) = (a + b + c)*100 + (a + b + c)*10 + (a + b + c)*1
= (a + b + c) * ( 100 + 10 + 1) = (a + b + c)*111 chia hết cho 111
=> abc + cab + bca chia hết cho 111
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100+10+1)a + (100+10+1)b + (100+10+1)c
= 111a + 111b + 111c = 111(a+b+c)
Vậy abc + bca + cab chia hết cho 111