tìm n thuộc N biết:
a) 4n+3 chia hết cho 2n-1
b) 2n+12 chia hết cho n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
a) 4n + 3 chia hết cho 2n - 1
\(\Rightarrow\)( 2n - 1 + 2n + 4 ) \(⋮\)( 2n - 1 )
\(\Rightarrow\)2(2n+1) + 4 \(⋮\)( 2n - 1 )
Tự làm tiếp nhé
b tương tự
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
a) Ta có: n + 3 = n - 1 + 1 + 3 = n - 1 + 4
Mà n - 1 chia hết cho n - 1
=> Để n - 1 + 4 chia hết cho n - 1 thì 4 phải chia hết cho n - 1
Mà Ư (4) = {1; 2; 4}
+) n - 1 = 1
=> n = 1 + 1 = 2
+) n - 1 = 2
=> n = 2 + 1 = 3
+) n - 1 = 4
=> n = 4 + 1 = 5
Vậy để n + 3 chia hết cho n - 1 thì n = {2; 3; 5}
b) Ta có: n + 6 = n - 4 + 4 + 6 = n - 4 + 10
Mà n - 4 chia hết cho n - 4
=> Để n - 4 + 10 chia hết cho n - 4 thì 10 phải chia hết cho n - 4
Mà Ư (10) = {1; 2; 5; 10}
+) n - 4 = 1
=> n = 1 + 4 = 5
+) n - 4 = 2
=> n = 2 + 4 = 6
+) n - 4 = 5
=> n = 4 + 5 = 9
+) n - 4 = 10
=> n = 4 + 10 = 14
Vậy để n + 6 chia hết cho n - 4 thì n = {5; 6; 9; 14}
c) Ta có: 4n + 3 = 4n - 2 + 2 + 3 = 4n - 2 + 5
Mà 4n - 2 chia hết cho 2n - 1
=> Để 4n - 2 + 5 chia hết cho 2n - 1 thì 5 phải chia hết cho 2n - 1
Mà Ư (5) = {1; 5}
+) 2n - 1 = 1
=> 2n = 1 + 1 = 2
=> n = 2 : 2 = 1
+) 2n - 1 = 5
=> 2n = 5 + 1 = 6
=> n = 6 : 2 = 3
Vậy để 4n + 3 chia hết cho 2n - 1 thì n = {1; 3}
d) Ta có: 2n + 12 = 2n - 4 + 4 + 12 = 2n - 4 + 16
Mà 2n - 4 chia hết cho n - 2
=> Để 2n - 4 + 16 chia hết cho n - 2 thì 16 phải chia hết cho n - 2
Mà Ư (16) = {1; 2; 4; 8; 16}
+) n - 2 = 1
=> n = 1 + 2 = 3
+) n - 2 = 2
=> n = 2 + 2 = 4
+) n - 2 = 4
=> n = 4 + 2 = 6
+) n - 2 = 8
=> n = 8 + 2 = 10
+) n - 2 = 16
=> n = 16 + 2 = 18
Vậy để 2n + 12 chia hết cho n - 2 thì n = {3; 4; 6; 10; 18}