K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

xét a=0=>10
a+168=1+168=169=13
2
=>a=0;b=2
xét a khác 0=>10
a có tận cùng bằng 0
=>10
a+168 có tận cùng bằng 8 không phải số chính phương
=>không có b
vậy a=0;b=2

ok nha hết nợ

ố tự nhiên ab sao cho ab = a2 + b2

* xét a=0=>10
a+168=1+168=169=13
2
=>a=0;b=2
* xét a khác 0=>10
a có tận cùng bằng 0
=>10
a+168 có tận cùng bằng 8 không phải số chính phương
=>không có b
vậy a=0;b=2

2 tháng 4 2021

Ta có:

 \(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)

Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.

 

10 tháng 8 2019

Biểu thức x ( a 2   -   a b   +   b 2   +   y ) có các biến là x, y

Chọn đáp án C

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Đề là tìm GTNN hay GTLN hả bạn?

19 tháng 1 2019

Ta có:  a - b = 3 a , b ∈ N ;   a > b

Khi viết ngược lại ta có: 10 b + a = 4 5 10 a + b - 10 ⇔ 35 a - 46 b = 50

Xét hệ phương trình:  a − b = 3 35 a − 46 b = 50 ⇔ a = 8 b = 5

Hoặc − a + b = 3 35 a − 46 b = 50 ⇔ a = − 188 11 b = − 155 11 l o ạ i

Với  a = 8 ,   b = 5 ,   a 2 + b 2 = 89

Đáp án cần chọn là: B

27 tháng 7 2015

2x +1 là số lẻ nên (2x+1)là số chính phương lẻ 

120 < (2x+1)2 < 200 => (2x+1)= 121 ; 169

+) (2x+1)= 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6

+) (2x+1)= 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7

Vậy....

1 tháng 1 2016

nswfhceqohvewoi

 

b: =>a=5-b

\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)

\(\Leftrightarrow2b^2-10b+25-13=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)

hay \(b\in\left\{2;3\right\}\)

\(\Leftrightarrow a\in\left\{3;2\right\}\)

4 tháng 1 2022

b: =>a=5-b

⇔(5−b)2+b2=13⇔(5−b)2+b2=13

⇔2b2−10b+25−13=0⇔2b2−10b+25−13=0

⇔(b−2)(b−3)=0⇔(b−2)(b−3)=0

hay b∈{2;3}b∈{2;3}

⇔a∈{3;2}⇔a∈{3;2}

 

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)