K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

Theo giả thiết ta có :

OA = OB, MA = MB ( do M là trung điểm AB )

\( \Rightarrow \) MO là đường trung trực của đoạn thẳng AB

\( \Rightarrow \) MO vuông góc với AB

Theo giả thiết ta có :

OA = OC, PC = PA ( do P là trung điểm AC )

\( \Rightarrow \) PO là đường trung trực của đoạn thẳng AC

\( \Rightarrow \) PO vuông góc với AC

Theo giả thiết ta có :

OC = OB, NC = NB ( do N là trung điểm BC )

\( \Rightarrow \) NO là đường trung trực của đoạn thẳng BC

\( \Rightarrow \) NO vuông góc với BC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng với ΔABC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc ADE=góc ABC

25 tháng 8 2023

mọi người giải gấp giúp em ạ

 

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

Do đó: ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ABC

b: Kẻ HM//AB(M thuộc AC)

HN//AC(N thuộc AB)

Xét tứ giác AMHN có

AM//HN

AN//HM

Do đó: AMHN là hình bình hành

=>AM=HN; AN=HM

ΔAHM có AH<AM+MH

=>AH<AM+AN

HN//AC

mà BH vuông góc AC

nên HB vuông góc HN

ΔHBN vuông tại H

=>HB<BN

HM//AB

CH vuông góc AB

Do đó: HC vuông góc HM

=>ΔHCM vuông tại H

=>HC<MC

AH<AM+AN

HB<BN

HC<MC

=>HA+HB+HC<AM+AN+BN+MC=AC+AB

Chứng minh tương tự, ta được:
HA+HB+HC<AB+BC và HA+HB+HC<AC+BC

=>3*(HA+HB+HC)<2(BA+BC+AC)

=>HA+HB+HC<2/3*(BA+BC+AC)

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACK

Xét ΔABC có BH<HC

mà AB là đường xiên của BH

và AC là đường xiên của CH

nên AB<AC