Cho a,b ,c khác 0 thoả mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Tính A = \(\frac{a}{b+c}=\frac{a+b}{c}\)( b+c khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)\(\Rightarrow b+c=2a\)
\(\Rightarrow a+c=2b\)
\(\Rightarrow a+b=2c\)
\(D=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
\(D=\frac{2a}{a}=\frac{2b}{b}=\frac{2c}{c}\)
\(D=2+2+2\)
\(D=6\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
=>b+c=2a
=>a+c=2b
=>a+b=2c
\(D=\frac{b+c}{a}+\frac{a+c}{b}=\frac{a+b}{c}\)
\(D=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)
\(D=2+2+2\)
D=6
Vậy D=6
^...^ ^_^
Vì \(a,b,c\ne0\) nên:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
\(\Rightarrow D=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow b+c=2a\)
\(\Rightarrow a+c=2b\)
\(\Rightarrow a+b=2c\)
\(D=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
\(D=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)
\(D=2+2+2\)
\(D=6\)
Vậy \(D=6\)
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )
Khó quá do anh thien
Bạn tham khảo câu hỏi tương tự.
Câu hỏi của Đào Thị Lan Nhi - Toán lớp 7 - Học trực tuyến OLM
A=\(\frac{a^2}{bc}\)+\(\frac{b^2}{ac}\)+\(\frac{c^2}{ab}\)=\(\frac{a^3}{abc}\)+\(\frac{b^3}{abc}\)+\(\frac{c^3}{abc}\)=\(\frac{a^3+b^3+c^3}{abc}\)
Mà a^3+b^3+c^3=3abc ( Tự chứng minh )
\(\Rightarrow\)A= \(\frac{3abc}{abc}\)= 3
vì a+b+c=0 => a+b= -c; b+c=-a; c+a=-b
(1+a/b)(1+b/c)(1+c/a)
=(a+b/b)(b+c/c)(a+c/a)
= (-c/b)(-a/c)(-b/a)
=-1
Thay a = -2 ; b = 1 ; c = 1 ( vì -2 + 1 + 1 = 0 )
Ta có : \(A=\left(1+\frac{-2}{1}\right)\left(1+\frac{1}{1}\right)\left(1+\frac{1}{-2}\right)\)
\(A=-1.2..\frac{1}{2}\)
\(A=-1\)
\(1\)