K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

|y-24|=y-2025

=>\(\left\{{}\begin{matrix}y-2025>=0\\\left(y-24\right)^2=\left(y-2025\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y>=2025\\\left(y-24-y+2025\right)\left(y-24+y-2025\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y>=2025\\2001\cdot\left(2y-2049\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y>=2025\\y=\dfrac{2049}{2}\end{matrix}\right.\)

=>\(y\in\varnothing\)

5 tháng 3

1024.5.


Bài 2:

Ta có: \(\left(2x-1\right)^4\ge0\forall x\)

=>\(-\left(2x-1\right)^4\le0\forall x\)

=>\(A=-\left(2x-1\right)^4+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

=>2x=1

=>\(x=\frac12\)

Bài 1:

a: \(x^4\ge0\forall x\)

\(\left(y-\frac27\right)^6\ge0\forall y\)

Do đó: \(x^4+\left(y-\frac27\right)^6\ge0\forall x,y\)

=>\(x^4+\left(y-\frac27\right)^6-2019\ge-2019\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x=0\\ y-\frac27=0\end{cases}\Rightarrow\begin{cases}x=0\\ y=\frac27\end{cases}\)

b: \(\left(x-5\right)^2\ge0\forall x\)

\(\left|y-7\right|\ge0\forall y\)

Do đó: \(\left(x-5\right)^2+\left|y-7\right|\ge0\forall x,y\)

=>\(\left(x-5\right)^2+\left|y-7\right|+2000\ge2000\forall x,y\)

Dấu '=' xảy ra khi x-5=0 và y-7=0

=>x=5 và y=7

NV
2 tháng 9

1. Đúng

2. Sai

3 tháng 9

Ký hiệu:

  • \(A \mid B\) mình hiểu là phần hiệu của tập \(A\) và tập \(B\), tức \(A \backslash B\) (các phần tử thuộc \(A\) mà không thuộc \(B\)).

1) Đẳng thức:

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) \cup \left(\right. A \cap B \left.\right) = A \cup B\)

Phân tích:

  • \(\left(\right. A \backslash B \left.\right)\) là phần chỉ có trong \(A\), không trong \(B\).
  • \(\left(\right. B \backslash A \left.\right)\) là phần chỉ có trong \(B\), không trong \(A\).
  • \(\left(\right. A \cap B \left.\right)\) là phần chung của \(A\) và \(B\).
  • Ba phần này bao phủ toàn bộ phần tử có trong \(A\) hoặc trong \(B\).

Kết luận:

Đúng. Vì ba phần này chính là phân hoạch của \(A \cup B\).


2) Đẳng thức:

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) = A \cup B\)

Phân tích:

  • Phần bên trái là hợp của hai phần tử nằm trong \(A\) hoặc \(B\)nhưng không nằm trong giao \(A \cap B\) (phần giao bị loại ra).
  • Phần bên phải là toàn bộ phần tử thuộc \(A\) hoặc \(B\), bao gồm cả phần giao.

Kết luận:

Sai. Vì phần giao \(A \cap B\) không được tính ở vế trái.


Tóm tắt:

Đẳng thức

Đúng/Sai

Giải thích ngắn

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) \cup \left(\right. A \cap B \left.\right) = A \cup B\)(A∖B)∪(B∖A)∪(A∩B)=A∪B(A∖B)∪(B∖A)∪(A∩B)=A∪B

Đúng

Bao phủ toàn bộ

 

\(A \cup B\)A∪BA∪B

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) = A \cup B\)(A∖B)∪(B∖A)=A∪B(A∖B)∪(B∖A)=A∪B

Sai


Bài 1: Tìm x, biết:a) \(\vert\frac32x+\frac12\vert=\vert4x-1\vert\) b) \(\vert\frac75x+\frac12\vert=\vert\frac43x-\frac14\) \(\vert\) c) \(\vert\frac54x-\frac72\vert-\vert\frac58x+\frac35\vert=0\) \(\)d) \(\vert\frac78x+\frac56\vert-\vert\frac12x+5\vert=0\) \(\) Bài 2: Tìm x, y thỏa mãn:a) \(\) \(\vert5-\frac23x\vert+\vert\frac23y-4\vert=0\) b) \(\vert\frac23-\frac12+\frac34x\vert+\vert1,5-\frac34-\frac32y\vert=0\) c) \(\vert x-2020\vert+\vert y-2021\vert=0\) d) \(\vert...
Đọc tiếp

Bài 1: Tìm x, biết:

a) \(\vert\frac32x+\frac12\vert=\vert4x-1\vert\)

b) \(\vert\frac75x+\frac12\vert=\vert\frac43x-\frac14\) \(\vert\)

c) \(\vert\frac54x-\frac72\vert-\vert\frac58x+\frac35\vert=0\) \(\)

d) \(\vert\frac78x+\frac56\vert-\vert\frac12x+5\vert=0\) \(\)

Bài 2: Tìm x, y thỏa mãn:

a) \(\) \(\vert5-\frac23x\vert+\vert\frac23y-4\vert=0\)

b) \(\vert\frac23-\frac12+\frac34x\vert+\vert1,5-\frac34-\frac32y\vert=0\)

c) \(\vert x-2020\vert+\vert y-2021\vert=0\)

d) \(\vert x-y\vert+\vert y+\frac{21}{10}\vert=0\)

Bài 3: Tìm x, biết:

a) \(\vert x+\frac{1}{1*2}\vert+\vert x+\frac{1}{2*3}\vert+\vert x+\frac{1}{3*4}\vert+\ldots+\vert x+\frac{1}{2019*2020}\vert=2020x\)

b) \(\vert x+\frac{1}{1*3}\vert+\vert x+\frac{1}{3*5}\vert+\vert x+\frac{1}{5*7}\vert+\ldots+\vert x+\frac{1}{197*199}\vert=100x\)

c) \(\vert x+\frac12\vert+\vert x+\frac16\vert+\vert x+\frac{1}{12}\vert+\vert x+\frac{1}{20}\vert+\ldots+\vert x+\frac{1}{110}\vert=11x\)

Giúp mình với!! \(\)


2

Bài 3:

a: \(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\cdots\left|x+\frac{1}{2019\cdot2020}\right|=2020x\) (1)

=>2020x>=0

=>x>=0

Phương trình (1) sẽ trở thành:

\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+\cdots+x+\frac{1}{2019\cdot2020}=2020x\)

=>\(2020x=2019x+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\right)\)

=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\)

=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{2019}-\frac{1}{2020}\)

=>\(x=1-\frac{1}{2020}=\frac{2019}{2020}\)

b: \(\left|x+\frac{1}{1\cdot3}\right|+\left|x+\frac{1}{3\cdot5}\right|+\cdots+\left|x+\frac{1}{197\cdot199}\right|=100x\) (2)

=>100x>=0

=>x>=0

(2) sẽ trở thành: \(x+\frac{1}{1\cdot3}+x+\frac{1}{3\cdot5}+\cdots+x+\frac{1}{197\cdot199}=100x\)

=>\(100x=99x+\frac12\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdots+\frac{2}{197\cdot199}\right)\)

=>\(x=\frac12\left(1-\frac13+\frac13-\frac15+\cdots+\frac{1}{197}-\frac{1}{199}\right)=\frac12\left(1-\frac{1}{199}\right)\)

=>\(x=\frac12\cdot\frac{198}{199}=\frac{99}{199}\)

c: \(\left|x+\frac12\right|+\left|x+\frac16\right|+\left|x+\frac{1}{12}\right|+\cdots+\left|x+\frac{1}{110}\right|=11x\left(3\right)\)

=>11x>=0

=>x>=0

(3) sẽ trở thành:

\(11x=x+\frac12+x+\frac16+\ldots+x+\frac{1}{110}\)

=>\(11x=10x+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)

=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)

=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\) (nhận)

Bài 2:

a: \(\left|5-\frac23x\right|\ge0\forall x;\left|\frac23y-4\right|\ge0\forall y\)

Do đó: \(\left|5-\frac23x\right|+\left|\frac23y-4\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}5-\frac23x=0\\ \frac23y-4=0\end{cases}\Rightarrow\begin{cases}\frac23x=5\\ \frac23y=4\end{cases}\Rightarrow\begin{cases}x=5:\frac23=\frac{15}{2}\\ y=4:\frac23=6\end{cases}\)

b: \(\left|\frac23-\frac12+\frac34x\right|=\left|\frac34x+\frac16\right|\ge0\forall x\)

\(\left|1,5-\frac34-\frac32y\right|=\left|\frac34-\frac32y\right|\ge0\forall y\)

Do đó: \(\left|\frac34x+\frac16\right|+\left|\frac34-\frac32y\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}\frac34x+\frac16=0\\ \frac34-\frac32y=0\end{cases}\Rightarrow\begin{cases}\frac34x=-\frac16\\ \frac32y=\frac34\end{cases}\Rightarrow\begin{cases}x=-\frac16:\frac34=-\frac16\cdot\frac43=-\frac{4}{18}=-\frac29\\ y=\frac34:\frac32=\frac24=\frac12\end{cases}\)

c: \(\left|x-2020\right|\ge0\forall x;\left|y-2021\right|\ge0\forall y\)

Do đó: \(\left|x-2020\right|+\left|y-2021\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-2020=0\\ y-2021=0\end{cases}\Rightarrow\begin{cases}x=2020\\ y=2021\end{cases}\)

d: \(\left|x-y\right|\ge0\forall x,y\)

\(\left|y+\frac{21}{10}\right|\ge0\forall y\)

Do đó: \(\left|x-y\right|+\left|y+\frac{21}{10}\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-y=0\\ y+\frac{21}{10}=0\end{cases}\Rightarrow x=y=-\frac{21}{10}\)

Bài 1:

a: \(\left|\frac32x+\frac12\right|=\left|4x-1\right|\)

=>\(\left[\begin{array}{l}4x-1=\frac32x+\frac12\\ 4x-1=-\frac32x-\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}4x-\frac32x=\frac12+1\\ 4x+\frac32x=-\frac12+1\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac52x=\frac32\\ \frac{11}{2}x=\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac32:\frac52=\frac35\\ x=\frac12:\frac{11}{2}=\frac{1}{11}\end{array}\right.\)

b: \(\left|\frac75x+\frac12\right|=\left|\frac43x-\frac14\right|\)

=>\(\left[\begin{array}{l}\frac75x+\frac12=\frac43x-\frac14\\ \frac75x+\frac12=\frac14-\frac43x\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac75x-\frac43x=-\frac14-\frac12\\ \frac75x+\frac43x=\frac14-\frac12\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac{1}{15}x=-\frac34\\ \frac{41}{15}x=-\frac14\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac34:\frac{1}{15}=-\frac34\cdot15=-\frac{45}{4}\\ x=-\frac14:\frac{41}{15}=-\frac14\cdot\frac{15}{41}=-\frac{15}{164}\end{array}\right.\)

c: \(\left|\frac54x-\frac72\right|-\left|\frac58x+\frac35\right|=0\)

=>\(\left|\frac54x-\frac72\right|=\left|\frac58x+\frac35\right|\)

=>\(\left[\begin{array}{l}\frac54x-\frac72=\frac58x+\frac35\\ \frac54x-\frac72=-\frac58x-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x-\frac58x=\frac35+\frac72\\ \frac54x+\frac58x=-\frac35+\frac72\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac58x=\frac{41}{10}\\ \frac{15}{8}x=\frac{29}{10}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{41}{10}:\frac58=\frac{41}{10}\cdot\frac85=\frac{164}{25}\\ x=\frac{29}{10}:\frac{15}{8}=\frac{29}{10}\cdot\frac{8}{15}=\frac{116}{75}\end{array}\right.\)

d: \(\left|\frac78x+\frac56\right|-\left|\frac12x+5\right|=0\)

=>\(\left|\frac78x+\frac56\right|=\left|\frac12x+5\right|\)

=>\(\left[\begin{array}{l}\frac78x+\frac56=\frac12x+5\\ \frac78x+\frac56=-\frac12x-5\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac78x-\frac12x=5-\frac56\\ \frac78x+\frac12x=-5-\frac56\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac38x=\frac{25}{6}\\ \frac{11}{8}x=-\frac{35}{6}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{25}{6}:\frac38=\frac{25}{6}\cdot\frac83=\frac{200}{18}=\frac{100}{9}\\ x=-\frac{35}{6}:\frac{11}{8}=-\frac{35}{6}\cdot\frac{8}{11}=-\frac{140}{33}\end{array}\right.\)

lI dau la lI

23 tháng 4 2018

mik bt giải r chờ tí

23 tháng 4 2018

nhanh lên bạn mình cần gấp lém

QT
Quoc Tran Anh Le
Giáo viên
30 tháng 8

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

8 tháng 5 2020

SOS thì vô số kiểu nhưng chưa có kiểu nào đẹp cho bài trên. Làm như t thì phải chia 6 TH rồi SOS cho cả 6 TH:)))

8 tháng 5 2020

Giờ thì tui biết tại sao tui không SOS được rồi: Đề sai.

Thử [x = 8, y = 1/8, z = 243] thì VT - VP = -14831/256 < 0