CMR: Q= 1/3^1+1/3^2+1/3^3+...+1/3^99+1/3^100<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(3A+A=4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4A< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(3B=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
\(B+3B=4B=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow B< \frac{3}{4}\) (2)
Từ (2) và (2) => \(4A< B< \frac{3}{4}\Rightarrow A< \frac{3}{16}\) (đpcm)
\(A=\frac{7n-1}{4};B=\frac{5n+3}{12}\)
Tìm n để A,B đồng thời là các số nguyên tố
a)
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-...-\frac{1}{64}=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...-\frac{1}{2^6}=A\)
2A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}\)
2A + A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^6}\)
3A = \(1-\frac{1}{2^6}=\frac{2^6-1}{2^6}\)(đpcm)
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
1,2 : 10 = 0,12
4,6 : 1000 = 0,0046
781,5 : 100 = 7,815
15,4 : 100 = 0,154
45,82 : 10 = 4,582
15632 : 1000 = 15,632
hok tốt nha ^_^
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(\frac{A}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}.....+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)
\(A-\frac{A}{3}=\frac{2A}{3}=\frac{1}{3}=\frac{1}{3}-\frac{1}{3^{101}}\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{100}}< \frac{1}{2}\)