K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF

20 tháng 10 2023

A B x y C D M O

a/

Xét tg vuông OAC và tg vuông OMC có

OA=OM=R

OC chung

=> tg OAC = tg OMC  (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)

Tương tự ta cũng có

tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)

\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)

b/

AB+BD nhỏ nhất khi \(M\equiv B\)

a: Xét tứ giác ABDC có

AC//BD

góc CAB=90 độ

Do đó: ABDC là hình thang vuông

b: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

c: Xét (O) có

CA,CM là tiêp tuyến

nên CA=CM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB

CM+MD=CD

=>AC+BD=CD

26 tháng 11 2022

Làm cho mik ý b và c

a: Xét (O) có

CA,CM là tiếp tuyến

nênCA=CM và OC là phân giác của góc AOM(1)

mà OA=OM

nên OC là trung trực của AM

=>OC vuông góc với AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>MB vuông góc MA

=>MB//OC

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>OC vuông góc với OD

mà OM vuông góc DC

nên MC*MD=OM^2

=>AC*BD=R^2

c: Gọi H là trung điểm của CD

Xét hình thang ABDC có

H,O lần lượtlà trung điểm của CD,AB

nên HO là đường trung bình

=>HO//AC//BD

=>HO vuông góc với AB

=>AB là tiếp tuyến của (H)