K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Ta có :\(\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}}=\frac{2013-1}{\sqrt{2013}}+\frac{2012+1}{\sqrt{2012}}\)

=>\(\frac{2013}{\sqrt{2013}}-\frac{1}{\sqrt{2013}}+\frac{2012}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}\)

=>\(\sqrt{2013}-\frac{1}{\sqrt{2013}}+\sqrt{2012}+\frac{1}{\sqrt{2012}}\)

Mà \(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}>0\)

Vậy \(\sqrt{2012}+\sqrt{2013}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}>\sqrt{2012}+\sqrt{2013}\)

Hay \(\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}}>\sqrt{2012}+\sqrt{2013}\)

6 tháng 2 2016

đặt \(A=\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}};B=\sqrt{2012}+\sqrt{2013}\)

ta có:\(A=\frac{2013-1}{\sqrt{2013}}+\frac{2012+1}{\sqrt{2012}}=\sqrt{2013}-\frac{1}{\sqrt{2013}}+\sqrt{2012}+\frac{1}{\sqrt{2012}}\)

\(\Rightarrow A=\left(\sqrt{2013}+\sqrt{2012}\right)+\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)>\sqrt{2012}+\sqrt{2013}=B\)

vậy A>B(đpcm)
 

6 tháng 2 2016

Xét hiệu bằng cách lấy vế trái trừ vế phải nhé bạn

19 tháng 9 2019

\(\frac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\frac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{1}{\sqrt{2012}.\sqrt{2013}\left(\sqrt{2013}+\sqrt{2012}\right)}\)

\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2\left(\sqrt{2}+1\right)}}+...+\frac{\left(\sqrt{2013}-\sqrt{2012}\right)\left(\sqrt{2013}+\sqrt{2012}\right)}{\sqrt{2012}\sqrt{2013}\left(\sqrt{2012}+\sqrt{2013}\right)}\)

\(\frac{\sqrt{2}-1}{\sqrt{2}}+...+\frac{\sqrt{2013}-\sqrt{2012}}{\sqrt{2012}\sqrt{2013}}\)

\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\)

\(\frac{\sqrt{2013}-1}{\sqrt{2013}}=\frac{2013-\sqrt{2013}}{2013}\)

12 tháng 8 2017

!@#$%^&*()_+\ [];'{}

đầu hàng tại chỗ !

hiiiii

13 tháng 8 2017

NX \(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}\)  =\(\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}-1\right)}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}+1\right)^2}\)

                                           =\(\frac{\left(\left(\sqrt{n+1}-\sqrt{n}\right)^2-1^2\right)}{n+1-n-1-2\sqrt{n}}\) \(=\frac{n+1+n-2\sqrt{\left(n+1\right)n}-1}{-2\sqrt{n}}=\frac{2n-2\sqrt{n\left(n+1\right)}}{-2\sqrt{n}}\) 

=\(\frac{n-\sqrt{n\left(n+1\right)}}{-\sqrt{n}}=\frac{n}{-\sqrt{n}}+\frac{\sqrt{n\left(n+1\right)}}{\sqrt{n}}=-\sqrt{n}+\sqrt{n+1}\)

thay vao Q ta co

Q= \(-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{2012}+\sqrt{2013}=-\sqrt{2}+\sqrt{2013}\)