K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 giờ trước (20:58)

Định lý Bézout (hay Định lý Bézout về các ước chung) là một kết quả quan trọng trong đại số và lý thuyết số, liên quan đến các đa thức và số nguyên.

Định lý Bézout cho rằng:

  • Với hai đa thức f(x)f(x) và g(x)g(x) trong K[x]K[x] (với KK là một trường, ví dụ như RR hay CC), nếu d=gcd⁡(f(x),g(x))d=gcd(f(x),g(x)) là ước chung lớn nhất của f(x)f(x) và g(x)g(x), thì tồn tại hai đa thức u(x)u(x) và v(x)v(x) sao cho:

d(x)=u(x)f(x)+v(x)g(x)d(x)=u(x)f(x)+v(x)g(x)

  • Nếu f(x)f(x) và g(x)g(x) là hai số nguyên, định lý này nói rằng với bất kỳ cặp số nguyên aa và bb, sẽ luôn tồn tại các số nguyên xx và yy sao cho:

ax+by=gcd⁡(a,b)ax+by=gcd(a,b)

Đây là dạng cơ bản của định lý Bézout trong lý thuyết số. Định lý này được sử dụng rộng rãi trong việc tìm ước chung lớn nhất của hai số, giải quyết các phương trình Diophantine, và trong các ứng dụng mã hóa (như RSA).

Về bản chất, định lý Bézout cho phép ta biểu diễn ước chung lớn nhất của hai đa thức hoặc số nguyên dưới dạng một tổ hợp tuyến tính của chúng.

28 tháng 10 2018

đặt \(f\left(x\right)=x^{2005}+x^{2004}\)

đa thức f(x) chia cho đa thức x - 1 có số dư là f(1) = 2

đa thức f(x) chia cho đa thức x + 1 có số dư là f(-1) = 0

đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b=\left(x-1\right)\left(x+1\right).Q\left(x\right)+ax+b\)

đẳng thức trên đúng với mọi x, nên thay lần lượt x = 1 và x = -1 ta được

\(\hept{\begin{cases}f\left(1\right)=0.2.Q\left(x\right)+a+b=2\\f\left(-1\right)=0\left(-2\right).Q\left(x\right)-a+b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=2\\b-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)

vậy đa thức f(x) chia đa thức x2 - 1 có số dư là x + 1

6 tháng 11 2017

Đáp án: B

Nguyên lý I của nhiệt động lực học: Độ biến thiên nội năng của hệ bằng tổng công và nhiệt lượng mà hệ nhận được: DU = Q + A

Q là nhiệt lượng trao đổi giữa hệ và môi trường: Q > 0 khi hệ nhận nhiệt, Q < 0 khi hệ tỏa nhiệt.

A là công do hệ thực hiện, A > 0 khi hệ nhận công, A < 0 khi hệ sinh công

Như vậy khi chất khí bị nén nhanh thì chất khí nhận công:

A > 0 → Q < 0 → chất khí nóng lên nhanh.

Nhớ up tài liệu lên đây để mọi người cùng tải về nha admin VICE.

em không tham gia cuộc thi này :(

 

28 tháng 10 2019

Ta có

Vì phần dư R = 0 nên Phép chia đa thức (2 x 3 – 26x – 24) cho đa thức x 2 + 4x + 3 là phép chia hết.

Do đó (I) đúng.

Lại có

Nhận thấy phần dư R = 0 nên phép chia đa thức ( x 3 – 7x + 6) cho đa thức x + 3 là phép chia hết. Do đó (II) đúng

Đáp án cần chọn là: A

8 tháng 11 2017

Lời giải

Ta có

Vì phần dư R = 5 ≠ 0 nên phép chia đa thức 3 x 3   –   2 x 2 + 5 cho đa thức 3x – 2 là phép chia có dư. Do đó (I) sai

Lại có

Nhận thấy phần dư R = 0 nên phép chia đa thức ( 2 x 3   +   5 x 2 – 2x + 3) cho đa thức (2 x 2 – x + 1) là phép chia hết. Do đó (II) đúng

Đáp án cần chọn là: D

20 tháng 11 2017

Gọi đa thức cần tìm là f(x); g(x),r(x), q(x) lần lượt là thương và số dư của f(x) cho x-2,x-3, x2-5x+6

Ta có f(x)= (x2-5x+6).2x+q(x)

Vì bậc của số dư luôn nhỏ hơn bậc của số bị chia mà x2-5x+6 có bậc là 2=> q(x) là đa thức bậc nhất => q(x)=ax+b

=> f(x)= (x2-5x+6).2x+ax+b=(x-2)(x-3).2x+ax+b

Ta cũng có 

• f(x) = (x-2).g(x)+2

•f(x)= (x-3).r(x)+7

Ta xét các giá trị của x

+ x=2=> f(x)=2=> 2a+b=2(1)

+ x=3=> f(x) =7=> 3a+b= 7(2)

Lấy (2)-(1) ta có a=5=> b=-12

=> f(x)=(x2-5x+6).2x+5x-12

= 2x3-10x2+12x+5x-12= 2x3-10x2+17x-12

20 tháng 11 2017

các bạn làm cách nào cũng đc

ko bắt buộc phải dùng định lí bezout

10 tháng 4 2019

Đáp án: C