K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 giờ trước (18:14)

 

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-30^0=60^0\)

Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

Do đó: ΔAHB=ΔAHD

=>AB=AD

Xét ΔABD có AB=AD và \(\widehat{ABD}=60^0\)

nên ΔABD đều

b: Gọi giao điểm của CE và AH là K

Xét ΔCAK có

CH,AE là các đường cao

CH cắt AE tại D

Do đó: D là trực tâm cuả ΔCAK

=>KD\(\perp\)AC
mà AB\(\perp\)AC

nên KD//AB

Xét ΔHAB vuông tại H và ΔHKD vuông tại H có

HB=HD

\(\widehat{HBA}=\widehat{HDK}\)(hai góc so le trong, BA//DK)

Do đó: ΔHAB=ΔHKD

=>HA=HK

=>H là trung điểm của AK

Xét ΔCHA vuông tại H và ΔCHK vuông tại H có

CH chung

HA=HK

Do đó: ΔCHA=ΔCHK

=>\(\widehat{HCA}=\widehat{HCK}=30^0\)

\(\widehat{ACK}=\widehat{ACH}+\widehat{KCH}=30^0+30^0=60^0\)

ΔCHA=ΔCHK

=>CA=CK

Xét ΔCAK có CA=CK và \(\widehat{ACK}=60^0\)

nên ΔCAK đều

ΔCAK đều

mà AE là đường cao

nên E là trung điểm của CK

Xét ΔKAC có

H,E lần lượt là trung điểm của KA,KC

=>HE là đường trung bình của ΔKAC

=>HE//AC

c:

Xét ΔNMA vuông tại N và ΔPMC vuông tại P có

MA=MC

\(\widehat{NMA}=\widehat{PMC}\)(hai góc đối đỉnh)

Do đó: ΔNMA=ΔPMC

=>MN=MP

=>M là trung điểm của NP

BN+BP

=BN+BN+NP

=2BN+2MN

=2(BN+MN)

\(=2BM>2AB\)

8 tháng 6 2021

a)Ta có:`AB^2+AC^2=21^2+28^2=1225`

Mà `BC^2=1225`

Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`

`=>` tam giác ABC vuông

b)Vì BAC vuông tại A

`=>hat{BAC}=90^o`

`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`

Xét  tam giác HBA và tam giác HAC có"

`hat{HAB}=hat{HCA}`(CMT)

`hat{BHA}=hat{HAC}=90^o`

`=>`  tam giác HBA đồng dạng với tam giác HAC(gg)

8 tháng 6 2021

c)Xét tam giác ACH và tam giác BAC ta có:

`hat{AHC}=hat{BAC}=90^o`

`hat{ACB}` chung

`=>DeltaACH~DeltaBAC(gg)`

`=>(AC)/(BH)=(BC)/(AC)`

`=>AC^2=BH.BC`.

d)Đường phân góc gì nhỉ?

30 tháng 3 2023

loading...  

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

22 tháng 4 2022

bn tham khảo ạ

undefined

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

a: Xét ΔAHB vuông tại H và ΔCHA vuông tạiH có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: BK là phân giác

=>AK/CK=BA/BC

ΔAHC có AD là phân giác

nên DH/CD=AH/AC=BA/BC

=>DH/CD=AK/CK

=>KD//AH

20 tháng 5 2020

ai chơi freefire thì kb với mình

12 tháng 7 2021

cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại  nói tính AD

12 tháng 7 2021

Mk nhầm bên trên là AB=6cm