cho\((a+b+c)^2=a^2+b^2+c^2\) rút gọn \(p=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(\frac{2x+1}{2x^2-5x-3}\)
b, \(\frac{2x+1}{2x^2-5x-3}\)
\(=\frac{2x+1}{2x^2+x-6x-3}\)
\(=\frac{2x+1}{x\left(2x+1\right)-3\left(2x+1\right)}\)
\(=\frac{2x+1}{\left(2x+1\right)\left(x-3\right)}\)
\(=\frac{1}{x-3}\)

bn hiu ve pt la dung roi va no rât qui để sau nay bn giải phuong trinh , con rut gọn la + - , : sao cho thu gọn đa thuc lai
vd 4x - 5 + x +9= 5x+ 4 vậy đó mk rút gọn xong
bn chu y nhieu đến pt vi nó quí lắm

a) √8/(√5 - √3)
= 2√2.(√5 + √3)/[(√5 - √3)(√5 + √3)]
= 2√2(√5 + √3)/2
= √10 + √6
b) √[(2 - √3)/(2 + √3)]
= √{(2 - √3)²/[(2 + √3)(2 - √3)]}
= (2 - √3)/(4 - 3)
= 2 - √3
Lời giải:
a.
\(\frac{\sqrt{8}}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)
b.
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\frac{(2-\sqrt{3})^2}{(2+\sqrt{3})(2-\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

\(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}=\dfrac{3-\sqrt{5}}{2}\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
=>\(a^2+b^2+c^2+2\left(ab+ac+bc\right)=a^2+b^2+c^2\)
=>2(ab+ac+bc)=0
=>2ab+2ac+2bc=0
=>ab+ac+bc=0
=>ab=-ac-bc; ac=-ab-bc; bc=-ab-ac
\(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac\)
\(=a^2-ab-ac+bc=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
\(b^2+2ac=b^2+ac+ac=b^2+ac-ba-bc\)
\(=b^2-ba-bc+ac=b\left(b-a\right)-c\left(b-a\right)\)
=(b-c)(b-a)=-(a-b)(b-c)
\(c^2+2ab=c^2+ab+ab=c^2+ab-ac-bc\)
\(=c^2-ac-bc+ab=c\left(c-a\right)-b\left(c-a\right)=\left(c-a\right)\left(c-b\right)=\left(a-c\right)\left(b-c_{}\right)\)
\(P=\frac{2}{a^2+2bc}+\frac{2}{b^2+2ac}+\frac{2}{c^2+2ab}\)
\(=\frac{2}{\left(a-b\right)\left(a-c\right)}-\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(a-c\right)\cdot\left(b-c\right)}\)
\(=\frac{2\left(b-c\right)-2\left(a-c\right)+2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{2\left(b-c-a+c+a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)