cho tam giác DEF vuông tại D có góc E = 2 góc F. Tính số đo góc E và góc F
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì \(\Delta DEF\) cân tại D (gt).
\(\Rightarrow\widehat{E}=\widehat{F}\) (Tính chất tam giác cân).
Mà \(\widehat{E}=50^o\left(gt\right).\)
\(\Rightarrow\widehat{D}=180^o-\widehat{E}-\widehat{F}=80^o.\)
b) DO là phân giác \(\widehat{D}\) (gt).
\(\Rightarrow\widehat{EDO}\) \(=\) \(\dfrac{\widehat{D}}{2}\) \(=\) \(\dfrac{80^o}{\text{2}}\) \(=40^o.\)
c) Xét \(\Delta DEF\) cân tại D:
DO là phân giác \(\widehat{D}\) (gt).
\(\Rightarrow\) DO là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) O là trung điểm của EF.
d) Xét \(\Delta DEF\) cân tại D:
DO là phân giác \(\widehat{D}\) (gt).
\(\Rightarrow\) DO là đường cao (Tính chất tam giác cân).
\(\Rightarrow\) DO vuông góc với EF.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
góc DFE=180-60-70=50 độ
=>góc DFK=góc EFK=50/2=25 độ
góc DKF=góc KEF+góc KFE=70+25=95 độ
góc EKF=180-95=85 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác DEF có
\(\widehat{D}+\widehat{E}+\widehat{F}=180^o\\ \Rightarrow\widehat{D}=180^o-\left(\widehat{E}+\widehat{F}\right)\\ =180^o-120^o=60^o\)
Mà
\(\widehat{E}=\widehat{F}=60^o\\ \Rightarrow\Delta DEF.cân\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\sin\widehat{E}=\dfrac{4}{5}\)
\(\cos\widehat{E}=\dfrac{3}{5}\)
\(\tan\widehat{E}=\dfrac{4}{3}\)
\(\cot\widehat{E}=\dfrac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔDFE vuông tại D có
\(FE^2=DE^2+DF^2\)
hay FE=7,5(cm)
Xét ΔDEF vuông tại D có
\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\cos\widehat{E}=\dfrac{3}{5}\)
\(\tan\widehat{E}=\dfrac{4}{3}\)
\(\cot\widehat{E}=\dfrac{3}{4}\)
b: \(\cos\widehat{E}=\dfrac{3}{5}\)
nên \(\widehat{E}=53^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=>\(EF^2=0,9^2+12^2=144,81\)
=>\(EF=\sqrt{144,81}\)(cm)
Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)
=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)
b: Xét ΔDEF vuông tại D có
\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)
\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)
\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)
E = 60° F=30°
bn phải trình bày cho mik xem