c) C = 1.3+ 3.5+ 5.7+ ... +99.101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)
\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
a.2/1.3+2/3.5+2/5.7+................+2/99.101
1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
1-1/101
100/101
b.5/1.3+5/3.5+5/5.7+............+5/99.101
5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2
5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)
5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)
5/2(1-1/101)
5/2.100/101
250/101
\(A=1\times3+3\times5+5\times7+...+99\times101\)
\(=1\left(1+2\right)+3\left(3+2\right)+5\left(5+2\right)+...+99\left(99+2\right)\)
\(=\left(1^2+3^2+5^2+...+99^2\right)+2\left(1+3+5+...+99\right)\)
Ta có:
\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
⇒ \(A=\left(1^2+2^2+3^2+...+100^2\right)-2^2\left(1^2+2^2+3^2+...+50^2\right)+2\left(1+3+5+...+99\right)\)
\(=\dfrac{100.101.201}{6}+\dfrac{4.50.51.101}{6}+\dfrac{\left(99+1\right).\left[\left(99-1\right):2+1\right]}{2}\)
\(=338350-171700+5000\)
\(=166650+5000=171650\)
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\)
\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\left(1-\dfrac{1}{101}\right)\)
\(=2\cdot\dfrac{100}{101}\)
\(=\dfrac{200}{101}\)
#Sahara |
Đặt A = 1.3+3.5+5.7+ ...+ 99.101
ta có : 6A = 1.3.6+3.5.6+5.7.6 +...+99.101.6
= 1.3.(5+1) + 3.5.( 7-1) +5.7.(9-3) +...+99.101.(103-97)
=1.3.5+1.3+3.5.7-1.3.5+5.7.9-3.5.7+...+99.101.103-97.99.101
=1.3+99.101.103
A =1029900 :6 = 171650
Answer:
Ta đặt \(A=1.3+3.5+5.7+...+99.101\)
\(\Rightarrow6A=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)\)
\(\Rightarrow6A=1.3.5+1.3+3.5.7-1.3.5+5.7.9-3.5.7+...+99.101.103-97.99.101\)
\(\Rightarrow6A=3+99.101.103\)
\(\Rightarrow6A=1029900\)
\(\Rightarrow A=1029900:6=171650\)
6C=1.3.6+3.5.6+5.7.6+...+99.101.6= =1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)= =1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103= =1.3+99.101.103 C=(1.3+99.101.103):6