K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1

là sao?????

11 tháng 10 2021

Ta có |x-10| > hoặc = 0 

=> |x-10|+ 2021 > hoặc = 2021

Dấu "=" xảy ra khi x-10 = 0

                         => x-10 = 0

                         =>      x=10

Giá trị nhỏ nhất của biểu thức A=|x-10|+2021 là = 2021 khi x =10

11 tháng 10 2021

Ta có : |x-10| > 0 =>  |x-10| + 2021 > 0 + 2021

                                       A             >     2021

Dấu"=" xảy ra khi x - 10 = 0 => x =10

Vậy Amin=2021 khi x = 10

13 tháng 8 2020

Bài làm:

a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)

Vậy Min(A) = 0 khi x=3/4

b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)

Vậy Max(B) = 0 khi x = -2020

13 tháng 8 2020

A = | x - 3/4 |

\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)

Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4

Vậy AMin = 0 , đạt được khi x = 3/4

B = - | x + 2020 |

\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)

\(\Rightarrow B\le0\)

Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020

Vậy BMax = 0, đạt được khi x = -2020

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:
$M=\frac{2022x-2021}{3x+2}=\frac{674(3x+2)-3369}{3x+2}$

$=674-\frac{3369}{3x+2}$

Để $M$ nhỏ nhất thì $\frac{3369}{3x+2}$ lớn nhất

Điều này xảy ra khi $3x+2$ là số nguyên dương nhỏ nhất.

Với $x$ nguyên thì $3x+2$ là số nguyên dương nhỏ nhất khi $3x+2=2$

$\Leftrightarrow x=0$

NV
7 tháng 1 2024

Áp dụng BĐT trị tuyệt đối:

\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)

\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)

\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1