Tìm 3 số a,b,c biết \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b+3c=-20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a}{2}=\frac{2b}{3.2}=\frac{3c}{4.3}\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\frac{a}{2}=5\Rightarrow a=10\)
\(\Rightarrow\frac{2b}{6}=5\Rightarrow2b=30\Rightarrow b=15\)
\(\Rightarrow\frac{3c}{12}=5\Rightarrow3c=60\Rightarrow x=20\)
Có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\)\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất của dãy tie soos bằng nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
=>\(\frac{a}{2}=5\Rightarrow a=10\)
\(\frac{2b}{6}=5\Rightarrow a=15\)
\(\frac{3c}{12}=5\Rightarrow c=20\)
Theo t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow a=10;b=15;c=20\)
Ban vao day nha Tìm các số a,b,c biết rằng : a/2=b/3=c/4 và a+2b-3c=-20
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a + 2b - 3c = -20
hay \(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và a + 2b - 3c
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) = \(\frac{a+2b-3c}{2+6-12}\) = \(\frac{-20}{-4}\) = 5
a = 2.5 = 10
b = 3.5 = 15
c = 4.5 = 20
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=5\)
Vậy \(\frac{a}{2}=5\Rightarrow a=10\);\(\frac{b}{3}=5\Rightarrow b=15\);\(\frac{c}{4}=5\Rightarrow c=20\)
Theo bài ra,ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{-4}=\frac{-20}{-4}=5\)(vì a+2b-3c=-20)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\Rightarrow a=10\\\frac{b}{3}=5\Rightarrow b=15\\\frac{c}{4}=5\Rightarrow c=20\end{cases}}\)
bài này dễ mà bạn
bạn sử dụng tình chất dãy tỉ số bằng nhau là ra mà
Áp dụng BĐT Cô-si
Ta có \(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\Rightarrow A\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\Rightarrow A\ge13\)
Dấu bằng xảy ra khi\(a=2;b=3;c=4\)
Vậy\(MinA=13\Leftrightarrow\left(a;b;c\right)=\left(2;3;4\right)\)
áp dụng tính chât của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b+3c}{2+2.3+3.4}=\frac{-20}{20}=-1\)
suy ra:
\(\frac{a}{2}=-1\Rightarrow a=-2\)
\(\frac{b}{3}=-1\Rightarrow b=-3\)
\(\frac{c}{4}=-1\Rightarrow c=-4\)