K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2024

Ta có M = x + 1/[y(x - y)]

>= x + 1/[(y + x - y)2/4] (dùng bất đẳng thức ab <= (a + b)2/4)

= x + 1/(x2/4)

= x + 4/x2

= x/2 + x/2 + 4/x2

>= 3 * căn bậc ba [(x/2)*(x/2)*(4/x2)]

= 3

Dấu "=" xảy ra khi y = x - y và x/2 = 4/x2

hay x = 2, y = 1

Vậy GTNN của M là 3 khi x = 2, y = 1

 

28 tháng 12 2024

Mình không gõ được công thức toán vì bị lỗi nên bạn thông cảm nhé.

NV
11 tháng 1 2022

Kẻ \(HE\perp AD\) , do tam giác ABD đều \(\Rightarrow HE=\dfrac{a\sqrt{3}}{2}\) ; \(AE=\dfrac{1}{4}AD\)

\(\Rightarrow AE=BM\Rightarrow\) tứ giác AEBM là hình bình hành \(\Rightarrow\) H đồng thời là trung điểm ME

Kẻ \(HK\perp SE\Rightarrow HK\perp\left(SAD\right)\)

a. Ta có: \(SH=HE\Rightarrow\) tam giác SHE vuông cân tại H

\(\Rightarrow\) K đồng thời là trung điểm SE

\(\Rightarrow\) KH là đường trung bình tam giác SME \(\Rightarrow SM||HK\)

\(\Rightarrow SM\perp\left(SAD\right)\)

b. Từ C kẻ \(CX\perp\left(SAD\right)\Rightarrow\widehat{CSX}\) là góc giữa SC và (SAD) đồng thời \(CX=d\left(C;\left(SAD\right)\right)\)

\(\Rightarrow sin\alpha=sin\widehat{CSX}=\dfrac{CX}{SC}\)

Từ M kẻ \(MI\perp SE\Rightarrow MI||HK\Rightarrow MI\perp\left(SAD\right)\)

\(\Rightarrow MI=d\left(M;\left(SAD\right)\right)\)

Mà \(CM||AD\Rightarrow CM||\left(SAD\right)\Rightarrow d\left(C;\left(SAD\right)\right)=d\left(M;\left(SAD\right)\right)\)

\(\Rightarrow CX=MI\)

HK là đường trung bình tam giác MIE \(\Rightarrow MI=2HK\)

\(MI=2HK=\dfrac{2SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{SH.a\sqrt{3}}{\sqrt{SH^2+\dfrac{3a^2}{4}}}\)

\(SC=\sqrt{SH^2+CH^2}=\sqrt{SH^2+MH^2+CM^2}=\sqrt{SH^2+HE^2+CM^2}\)

\(=\sqrt{SH^2+7a^2}\)

\(\Rightarrow sin\alpha=\dfrac{SH.a\sqrt{3}}{\sqrt{SH^2+7a^2}.\sqrt{SH^2+\dfrac{3a^2}{4}}}=\dfrac{a\sqrt{3}}{\sqrt{SH^2+\dfrac{21a^4}{4SH^2}+\dfrac{31}{4}a^2}}\le\dfrac{a\sqrt{3}}{\sqrt{2\sqrt{\dfrac{21a^4}{4}}+\dfrac{31}{4}a^2}}\)

Dấu "=" xảy ra khi \(SH^2=\dfrac{21a^4}{4SH^2}\Rightarrow SH=a\sqrt[4]{\dfrac{21}{4}}\)

Em kiểm tra lại tính toán

NV
11 tháng 1 2022

undefined

3 tháng 10 2024

🤔

15 tháng 10 2024

🌚

14 tháng 7 2021

a have

b to wear

c do

d couldn't

e to live

f to do

g stay

h since

i for

j did  

15 tháng 7 2021

Cảm ơn cậu nhiều lắm ạ 

3 tháng 3 2024

CÂU 1: 

\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

CÂU 2: 

\(\dfrac{12x^3y^2}{18xy^5}=\dfrac{2x^2}{3y^3}\)

CÂU 3: 

\(\dfrac{15x\left(x+5\right)^3}{20x^2\left(x+5\right)}=\dfrac{3\left(x+5\right)^2}{4x}\)

CÂU 4: 

\(\dfrac{3xy+x}{9y+3}=\dfrac{x\left(3y+1\right)}{3\left(3y+1\right)}=\dfrac{x}{3}\)

CÂU 5: 

\(\dfrac{3xy+3x}{9y+9}=\dfrac{3x\left(y+1\right)}{9\left(y+1\right)}=\dfrac{x}{3}\)

CÂU 6: 

\(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}=\dfrac{-x}{5y}\)

CÂU 7:

\(\dfrac{2x^2+2x}{x+1}=\dfrac{2x\left(x+1\right)}{x+1}=2x\)

CÂU 8: 

\(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\\ =\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

CÂU 9: 

\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\dfrac{2y}{3\left(x+y\right)^2}\)

a: BC=căn 6^2+8^2=10cm

bD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc B chung

=>ΔBHA đồng dạng với ΔBAC

=>BH/BA=BA/BC

=>BH*BC=BA^2

c: Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA

=>IH/IA=BA/BC=AD/DC

6 tháng 5 2021

câu 3 Gọi vận tốc ban đầu là x(x>0)km/h

vân tốc tăng thêm khi đi 100km là x+10 km/h

thời gian đi hết 100km là \(\dfrac{100}{x}h\)

thời gian đi hết quãng đường còn lại là \(\dfrac{220-100}{x+10}h\)

vì tổng tg đi hết quãng đường AB là 4h nên ta có pt

\(\dfrac{100}{x} \)+\(\dfrac{220-100}{x+10}\)=4 

giải pt x=50

vậy vận tốc ban đầu đi là 50 km/h

7 tháng 5 2021

Gọi x (km/h) là vận tốc ban đầu của ô tô (x > 0)

\(\Rightarrow\) x + 10 (km/h) là vận tốc lúc sau của ô tô

Thời gian đi 100 km đầu là: \(\dfrac{100}{x}\) (h)

Thời gian đi hết quãng đường còn lại là: \(\dfrac{220-100}{x+10}=\dfrac{120}{x+10}\) (h)

Theo đề bài ta có phương trình:

\(\dfrac{100}{x}+\dfrac{120}{x+10}=4\)

\(\Leftrightarrow100\left(x+10\right)+120x=4x\left(x+10\right)\)

\(\Leftrightarrow100x+1000+120x=4x^2+40x\)

\(\Leftrightarrow4x^2+40x-220x-1000=0\)

\(\Leftrightarrow4x^2-180x-1000=0\)

\(\Leftrightarrow x^2-45x-250=0\)

\(\Delta=\left(-45\right)^2-4.1.\left(-250\right)=3025\)

\(\Rightarrow\Delta=55\)

\(x_1=\dfrac{-\left(-45\right)+55}{2.1}=50\) (nhận)

\(x_2=\dfrac{-\left(-45\right)-55}{2.1}=-5\) (loại)

Vậy vận tốc ban đầu của ô tô là 50 km/h

28 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a-3b}{2\cdot5-3\cdot2}=\dfrac{12}{4}=3\)

Do đó: a=15; b=6

28 tháng 10 2021

d) Áp dụng t/c dtsbn:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a}{10}=\dfrac{3b}{6}=\dfrac{2a-3b}{10-6}=\dfrac{12}{4}=3\)

\(\Rightarrow\left\{{}\begin{matrix}a=3.5=15\\b=3.2=6\end{matrix}\right.\)

f) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=-\dfrac{z}{2}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{-z}{2}=\dfrac{x+y-z}{5+3+2}=\dfrac{2}{10}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}.5=1\\y=\dfrac{1}{5}.3=\dfrac{3}{5}\\z=\dfrac{1}{5}.\left(-2\right)=-\dfrac{2}{5}\end{matrix}\right.\)

g) \(\dfrac{x}{4}=\dfrac{y}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

\(\Rightarrow xy=20k^2=500\Rightarrow k=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\\\left\{{}\begin{matrix}x=-20\\y=-25\end{matrix}\right.\end{matrix}\right.\)

13 tháng 10 2021

Ai giúp mình zới, khó quá huhuhuhuhuh