chứng minh tam giác AKB = tam giác AKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
b: EC vuông góc với CB
AK vuông góc với CB
Do dó: EC//AK
c: Xét ΔCEB vuông tại C có góc B=45 độ
nen ΔCEB vuông cân tại C
=>CA là phân giác của góc BCE
Ta có hình vẽ:
a/ Xét tam giác AKB và tam giác AKC có:
AB = AC (GT)
góc BAK = góc CAK (vì AK là phân giác góc A)
AK: cạnh chung
Vậy tam giác AKB = tam giác AKC (c.g.c)
b/ Vì tam giác AKB = tam giác AKC
nên góc AKB = góc AKC (1)
Mà góc AKB + góc AKC = 1800 ( vì kề bù ) (2)
Từ (1), (2) => AK \(\perp\)BC
a: Xét ΔAKB và ΔAKC có
AB=AC
AK chung
KB=KC
Do đó: ΔAKB=ΔAKC
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
Hình đâu b
hình đâu bạn ?