K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2024

x^3+6x^2+12x+8+y^3=(x^3+6x^2+12x+8) +y^3= (x+2)^3+y^3=(x+2+y)[(x+2)^2-(x+2)y+y^2]=(x+2+y)(x^2+4x+4-xy-2y+y^2)=(x+2+y)(x^2+4x-xy-2y+y^2+4)

4 tháng 7 2017

\(=\left(x^2+4x-3\right)^2-5\left(x^2+4x-3\right)+6x^2\)

\(=x^4+16x^2+9+8x^3-24x-6x^2-5x^2-20x+15+6x^2\)

\(=x^4+8x^3+11x^2-44x+24\)

\(=\left(x^4-x^3\right)+\left(9x^3-9x^2\right)+\left(20x^2-20x\right)-\left(24x-24\right)\)

\(=x^3\left(x-1\right)+9x^2\left(x-1\right)+20x\left(x-1\right)-24\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+9x^2+20x-24\right)\)

4 tháng 9 2021

Ta có: (x2+6x-5)(x2+6x+3)-20

      = [(x2+6x-1)-4][(x2+6x-1)+4]-20

      = (x2+6x-1)2-16-20

      = (x2+6x-1)2-36

      = (x2+6x-7)(x2+6x-5)

      = (x+7)(x-1)(x2+6x-5)

4 tháng 9 2021

\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)\\ =\left(x^2+6x-1\right)^2-16-20\\ =\left(x^2+6x-1\right)^2-36\\ =\left(x^2+6x-1-6\right)\left(x^2+6x-1+6\right)\\ =\left(x^2+6x-7\right)\left(x^2+6x+5\right)\\ =\left(x-1\right)\left(x+7\right)\left(x+1\right)\left(x+5\right)\)

4 tháng 9 2021

\(\left(x+y\right)^2+3\left(x+y\right)-10=\left[\left(x+y\right)^2+2\left(x+y\right).\dfrac{3}{2}+\dfrac{9}{4}\right]-\dfrac{49}{4}\)

\(=\left(x+y+\dfrac{3}{2}\right)^2-\dfrac{49}{4}=\left(x+y+\dfrac{3}{2}-\dfrac{7}{2}\right)\left(x+y+\dfrac{3}{2}+\dfrac{7}{2}\right)=\left(x+y-2\right)\left(x+y+5\right)\)

\(\left(x+y\right)^2+3\left(x+y\right)-10\)

\(=\left(x+y\right)^2+5\left(x+y\right)-2\left(x+y\right)-10\)

\(=\left(x+y+5\right)\left(x+y-2\right)\)

12 tháng 9 2021

\(=\left(x+3\right)^6-y^6\\ =\left[\left(x+3\right)^3-y^3\right]\left[\left(x+3\right)^3+y^3\right]\\ =\left(x+3-y\right)\left[\left(x+3\right)^2+y\left(x+3\right)+y^2\right]\left(x+3+y\right)\left[\left(x+3\right)^2-y\left(x+3\right)+y^2\right]\\ =\left(x+y+3\right)\left(x-y+3\right)\left(x^2+6x+9+xy+3y+y^2\right)\left(x^2+6x+9-xy-3y+y^2\right)\)

12 tháng 9 2021

\(\left(x^2+6x+9\right)^3-\left(y^2\right)^3=\left(x^2+6x+9-y^2\right)\left[\left(x^2+6x+9\right)^2+\left(x^2+6x+9\right)y^2+y^4\right]\)

\(=\left[\left(x+3\right)^2-y^2\right]\left\{\left[\left(x^2+6x+9\right)^2+2\left(x^2+6x+9\right)y^2+y^4\right]-\left(x^2+6x+9\right)y^2\right\}\)

\(=\left(x+3-y\right)\left(x+3+y\right)\left[\left(x^2+6x+9+y^2\right)^2-\left(x+3\right)^2y^2\right]\)

\(=\left(x+3-y\right)\left(x+3+y\right)\left[\left(x^2+6x+9+y^2\right)-\left(x+3\right)y\right]\left(x^2+6x+9+y^2\right)+\left(x+3\right)y\)

\(=\left(x+3-y\right)\left(x+3+y\right)\left(x^2+6x+9+y^2-xy-3y\right)\left(x^2+6x+9+y^2+xy+3y\right)\)

4 tháng 9 2021

undefined

Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

 

6 tháng 11 2016

x2-y2+6x+6y = (x2-y2)+(6x+6y) = (x-y)(x+y)+6(x+y) = (x-y-6)(x+y)

2: \(8xy-24xy+16x\)

\(=8x\cdot y-8x\cdot3y+8x\cdot2\)

\(=8x\left(y-3y+2\right)=8x\left(-2y+2\right)\)

\(=-16y\left(y-1\right)\)

3: \(xy-x=x\cdot y-x\cdot1=x\left(y-1\right)\)

11: \(2mx-4m2xy+6mx\)

\(=2mx-2my\cdot4y+2mx\cdot3\)

\(=2mx\left(1-4y+3\right)\)

\(=2mx\left(4-4y\right)=8mx\left(1-y\right)\)

12: \(7x^2y^5-14x^3y^4-21y^3\)

\(=7y^3\cdot x^2y^2-7y^3\cdot2x^3y-7y^3\cdot3\)

\(=7y^3\left(x^2y^2-2x^3y-3\right)\)

13: \(2\left(x-y\right)-a\left(x-y\right)\)

\(=2\cdot\left(x-y\right)-a\cdot\left(x-y\right)\)

\(=\left(x-y\right)\left(2-a\right)\)

2 tháng 9 2021

\(9x^2+6x-4y^2+4y=\left(9x^2+6x+1\right)-\left(4y^2-4y+1\right)=\left(3x+1\right)^2-\left(2y-1\right)^2=\left(3x+1-2y+1\right)\left(3x+1+2y-1\right)\)

2 tháng 9 2021

vẫn phân tích tiếp được mà chị

\(15x^3y^2+10x^2y^2-2x^2y^3\)

\(=x^2y^2\left(15x+10-2y\right)\)

26 tháng 8 2021

`15x^3 y^2 + 10x^2 y^2 - 2x^2 y^3`

`=x^2y^2(15x+10-2y)`