K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

b: ΔODE cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)DE tại I

Xét ΔFOA có

AI,OB là các đường cao

AI cắt OB tại G

Do đó: G là trực tâm của ΔFOA

=>FG\(\perp\)OA 

c: Gọi H là trung điểm của FA

ΔFIA vuông tại I

mà IH là đường trung tuyến

nên IH=HA=HF

=>H là tâm đường tròn ngoại tiếp ΔFIA

ΔOIG vuông tại I

mà IQ là đường trung tuyến

nên QI=QG

=>ΔQIG cân tại Q

\(\widehat{HIQ}=\widehat{HIG}+\widehat{QIG}=\widehat{HAI}+\widehat{QGI}\)

mà \(\widehat{QGI}=\widehat{BGA}\)(hai góc đối đỉnh)

nên \(\widehat{HIQ}=\widehat{BGA}+\widehat{BAG}=90^0\)

=>HI\(\perp\)IQ

=>IQ là tiếp tuyến của đường tròn ngoại tiếp ΔFIA

28 tháng 1 2018

de et tui lam oi

28 tháng 1 2018
9

Cho hình vuông ABCD,Vẽ 2 nửa hình tròn đường kính AD và BC,Chu vi đường tròn đường kính AD - 25.12cm,Tính diện tích phần tô đậm,Toán học Lớp 5,bài tập Toán học Lớp 5,giải bài tập Toán học Lớp 5,Toán học,Lớp 5

Bài tham khảo

25 tháng 11 2023

a: Sửa đề: A,B,M,O

Xét tứ giác BMOA có

\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)

=>BMOA là tứ giác nội tiếp

=>B,M,O,A cùng thuộc một đường tròn

b: Xét (O) có

BA,BM là tiếp tuyến

Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)

=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)

Xét (O) có

CA,CN là tiếp tuyến

Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)

=>\(\widehat{AON}=2\cdot\widehat{AOC}\)

\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)

=>\(2\cdot\widehat{BOC}=180^0\)

=>\(\widehat{BOC}=90^0\)

Xét ΔOBC vuông tại O có OA là đường cao

nên \(OA^2=AB\cdot AC\)

mà AB=BM và AC=CN

nên \(OA^2=BM\cdot CN\)

c: BA=BM

=>B nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM tại trung điểm của AM

=>BO\(\perp\)AM tại H và H là trung điểm của AM

CA=CN

=>C nằm trên đường trung trực của AN(3)

OA=ON

=>O nằm trên đường trung trực của AN(4)

Từ (3) và (4) suy ra CO là đường trung trực của AN

=>CO\(\perp\)AN tại trung điểm của AN

=>CO\(\perp\)AN tại K và K là trung điểm của AN

Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)

nên AHOK là hình chữ nhật

 

28 tháng 1 2018

67,4 cm

30 tháng 1 2021

Cậu vẽ hình đấy ra bằng cách nào thế Công chúa Mắt Tím ? 

8 tháng 5 2021

 Ta có

DB=DM; EC=EM; AB=AC (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến các tiếp điểm = nhau)

\(C_{ADE}=AD+DM+AE+EM=AD+DB+AE+EC=\)

\(=AB+AC=2AB\)

20 tháng 8 2021

Theo tính chất hai tiếp tuyến cắt nhau ta có: DM=DB, EM=ECDM=DB,EM=EC.

Chu vi tam giác ADEADE bằng :

AD+DE+AE=AD+DM+ME+EAAD+DE+AE=AD+DM+ME+EA

=AD+DB+EC+AE=AD+DB+EC+AE

=AB+AC=2 . AB=AB+AC=2.AB .

Bạn tự vẽ hình nha!

c) Các tam giác ACM và BDM cân tại C và D; CO là phân giác góc ACM; DO là phân giác góc BDM => Các đường phân giác này cũng là đường cao => CO vuông góc với AM tại E và DO vuông góc với BM tại F => g. OEM = OFM = 90o.

Mặt khác g.AMB =90o(Góc nội tiếp chắn nửa đường tròn) => Từ giác OEMF là hình chữ nhật => I là trung điểm của OM => IO = OM/2 = R/2 (Không đổi)

Do đó khi M di chuyển thì trung điểm I của EF luôn cách O một khoảng không đổi R/2 => Quỹ tích trung điểm I của EF là nửa đường tròn tâm O bán kính R/2 cùng phía với nửa đường trón tâm O đường kính AB.

 
27 tháng 10 2023

a: ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của \(\widehat{AOB}\)

Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

b: Gọi giao điểm của AB với OC là H

ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>HA=HB=12(cm)

ΔAHO vuông tại H

=>\(HA^2+HO^2=AO^2\)

=>\(HO^2=15^2-12^2=81\)

=>HO=9(cm)

Xét ΔOAC vuông tại A có AH là đường cao

nên OH*OC=OA^2

=>OC=15^2/9=25(cm)

6 tháng 5 2021

\(=\sqrt{64}=8\left(cm\right)\)

Áp dụng định lý Pytago vào tam giác AOB vuông tại B, ta có:

AB=\(\sqrt{AO^2-OB^2}=\sqrt{10^2-6^2}\)\(=\sqrt{64}=8\left(cm\right)\)

18 tháng 8 2021

AB=8