Chứng minh rằng tích của tám số tự nhiên liên tiếp chia hết cho 128.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 8 số nguyên liên tiếp lần lượt là : 2x - 4 , 2x - 3 , 2x - 2 , 2x - 1 , 2x , 2x + 1 , 2x + 2 , 2x + 3 .
=> Tích của 8 số tự nhiên liên tiếp là :
( 2x - 4 ) . ( 2x - 3 ) . ( 2x - 2 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . ( 2x + 2 ) . ( 2x + 3 )
= 2 ( x - 2 ) . ( 2x - 3 ) . 2 ( x - 1 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . 2 ( x + 1 ) . ( 2x + 3 )
= 16 ( x - 2 ) ( x - 1 ) x ( x + 1 ) . ( 2x - 3 ) ( 2x - 1 ) ( 2x + 1 ) . ( 2x + 3 ) chia hết cho 16
=> ( x - 2 ) ( x - 1 ) x ( x + 1 ) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4 . Do đó ( x - 2 ) ( x - 1 ) x ( x + 1 ) chia hết cho 8 .
Vậy ( 2x - 4 ) . ( 2x - 3 ) . ( 2x - 2 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . ( 2x + 2 ) . ( 2x + 3 ) chia hết cho 16 . 8 = 128
Gọi 8 số nguyên liên tiếp lần lượt là 2x – 4, 2x – 3, 2x – 2, 2x – 1, 2x, 2x +1, 2x +2, 2x +3.
Thì tích tám số tự nhiên liên tiếp là:
(2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3)
= 2(x – 2). (2x – 3). 2(x – 1). (2x – 1). 2x. (2x +1) .2(x +1) .(2x +3)
= 16 (x – 2)(x – 1)x(x + 1).(2x – 3)(2x – 1)(2x +1) .(2x +3) chia hết cho 16
(x – 2)(x – 1)x(x + 1) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4. do đó (x – 2)(x – 1)x(x + 1) chia hết cho 2.4 = 8
Vậy (2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3) chia hết cho 16.8 = 128
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
Chia n thành 2 loại : Số chẵn (2k) ; Số lẻ (2k + 1)
Rồi thế vô
tích hai số t ự nhiên liên tieeos trong đó có 1 số chẵn số lẻ suy ra chẵn nhân lẻ =chẵn (dpcm)
Ta có trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)
a)Gọi 2 số tự nhiên liên tiếp đó là a và b
Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn
=> ab chia hết cho 2
Vậy.............................
b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2 ( k \(\in\) N)
Mà 3k luôn chia hết cho 3
=> 3k(3k+1)(3k+2) luôn chia hết cho 3
Vậy......................................
a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 )
và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)
mà một số chẵn thì luôn luôn chia hết cho 2
suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh )
Gọi 8 số nguyên liên tiếp lần lượt là 2x – 4, 2x – 3, 2x – 2, 2x – 1, 2x, 2x +1, 2x +2, 2x +3.
Thì tích tám số tự nhiên liên tiếp là:
(2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3)
= 2(x – 2). (2x – 3). 2(x – 1). (2x – 1). 2x. (2x +1) .2(x +1) .(2x +3)
= 16 (x – 2)(x – 1)x(x + 1).(2x – 3)(2x – 1)(2x +1) .(2x +3) chia hết cho 16
(x – 2)(x – 1)x(x + 1) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4. do đó (x – 2)(x – 1)x(x + 1) chia hết cho 2.4 = 8
Vậy (2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3) chia hết cho 16.8 = 128
Lưu ý : Dấu chấm là dấu nhân nha