Cho tam giác ABC vuông tại A có AB=12,BC=20 .Hãy tính AC
giải nhanh hộ mình nha mình còn bài nữa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề dễ thế này cũng nhờ làm hộ à!? :)))))))))
Tam giác ABC vuông tại A
Định lí Pytago: \(BC^2=AB^2+AC^2\)
Suy ra \(10^2=6^2+AC^2\)
=> AC= 8 (cm)
Chu vi tam giác ABC: AB+ BC+ AC= 6 +10 + 8=24 (cm)
Bài 2:
Ta có: \(\dfrac{BD}{DC}=\dfrac{3}{7}\)
nên \(\dfrac{AB}{AC}=\dfrac{3}{7}\)
hay \(AB=\dfrac{3}{7}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}+AC^2=20^2=400\)
\(\Leftrightarrow AC^2=\dfrac{9800}{29}\)
\(\Leftrightarrow AC=\dfrac{70\sqrt{58}}{29}\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{3}{7}\cdot AC=\dfrac{30\sqrt{58}}{29}\left(cm\right)\)
a) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow HC^2=AC^2-AH^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{40^2-24^2}=32cm\)
b) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{9,6^2+12,8^2}=16cm\)
c) \(BC=CH+BH=72+12,5=84,5\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC=12,5.84,5=1056,25\\AC^2=CH.BC=72.84,5=6084\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{65}{2}\left(cm\right)\\AC=78\left(cm\right)\end{matrix}\right.\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{78.\dfrac{65}{2}}{84,5}=30\left(cm\right)\)
*Bạn tự vẽ hình nha*
a) Xét Δ ABC vuông tại A, có:
Góc B + góc C = 90°
⇒ Góc C= 90° - Góc B= 90° - 50°= 40°
Theo tỉ số lượng giác của góc nhọn ta có:
· AC =BC.SinB = 50. Sin50°= 38,3 (cm)
· AB = BC. SinC= 50. Sin40°= 32,1 (cm)
Sai chỗ nào thì bảo mình nhen !
Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(\Leftrightarrow AC^2=BC^2-AB^2=20^2-12^2=256=16^2\)
\(\Rightarrow AC=16\).
xét tam giác ABC vuông tại A có
BC^2= AC^2+ AB^2 (định lí Pytago)
400= 144-AC^2
AC^2=400-144=256
AC=16