chứng tỏ 2n+1 và 6n+3 là hai số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d
Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)d \(\Rightarrow\)2 \(⋮\)d \(\Rightarrow\)d \(\in\){ 1 ; 2 }
d là ước của số lẻ 2n + 1 nên d \(\ne\)2
Vậy d = 1
Do đó ( 2n + 1 ; 6n + 5 ) = 1
Gọi ƯCLN (2n+1,6n+1)=d.
Suy ra 2n+1 chia hết cho d và 6n+1 chia hết cho d.
Suy ra 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d.
Suy ra (6n+3)-(6n+1) chia hết cho d.
Suy ra 2 chia hết cho d hay d=1 hoặc 2.
Mà 2n+1 không chia hết cho 2 vì 2n+1 là số lẻ. Suy ra d=1.
Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.
Gọi d\inƯCLN\left(2n+1;6n+5\right)d∈ƯCLN(2n+1;6n+5) nên ta có :
2n+1⋮d2n+1⋮d và 6n+5⋮d6n+5⋮d
\Leftrightarrow3\left(2n+1\right)⋮d⇔3(2n+1)⋮d và 6n+5⋮d6n+5⋮d
\Leftrightarrow6n+3⋮d⇔6n+3⋮d và 6n+5⋮d6n+5⋮d
\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d⇒(6n+5)−(6n+3)⋮d
\Rightarrow2⋮d\Rightarrow d=2⇒2⋮d⇒d=2
Mà 2n+1;6n+52n+1;6n+5 là các số lẻ nên không thể có ước là 2
\Rightarrow d=1⇒d=1
\Rightarrow2n+1⇒2n+1 và 6n+56n+5 là nguyên tố cùng nhau
gọi (2n+3,6n+8)=d
=>d là ước của 3(2n+3)=6n+9
Mà d cũng là ước của 6n+8
=>d là ước của (6n+9)-(6n+8)=1
=>d=1
=> (2n+3,6n+8)==1 (đpcm)
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.