Với giá trị nào của m thi hai bất phương trình tương đương ?
(a-1)x -a + 3>0 và (a+1)x -a + 2 >0
A.a=1 B. a = 5 C. a=-1 D. -1<a<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
TH1.Nếu a-1=0 hay a =1 thì
(1) thành: 2 > 0 ( luôn đúng mọi x) Tập nghiệm của bất phương trình T = R
(2) thành: 2x+1> 0 hay x> -1/2 Tập nghiệm của bất phương trình
Vậy a= 1 không thỏa yêu cầu bài toán.
TH2. Nếu a+1= 0 hay a= -1thì
(1) thành: -2x=4>0 hay x< 2. Tập nghiệm của bất phương trình T2 = (-∞; 2)
(2) thành: 3> 0 luôn đúng Tập nghiệm của bất phương trình T= R
Vậy a= -1 không thỏa yêu cầu bài toán.
TH3.
(1) : (a-1) x> a-3 và (2) : (a+1) x> a-2
Hai bất phương trình tương đương
a.
(1) là pt bậc nhất 1 ẩn khi và chỉ khi \(2\left(m-1\right)\ne0\Leftrightarrow m\ne1\)
b.
Ta có: \(2x+5=3\left(x+2\right)-1\)
\(\Leftrightarrow2x+5=3x+5\)
\(\Leftrightarrow x=0\)
Do đó (1) tương đương (*) khi (1) nhận \(x=0\) là nghiệm
\(\Rightarrow2\left(m-1\right).0+3=2m-5\)
\(\Rightarrow m=4\)
a, để pt trên là pt bậc nhất khi m khác 2
b, Ta có \(2x+5=x+7-1\Leftrightarrow x=1\)
Thay x = 1 vào pt (1) ta được
\(2\left(m-2\right)+3=m-5\Leftrightarrow2m-1=m-5\Leftrightarrow m=-4\)
a, Để phương trình (1) là phương trình bậc nhất một ẩn thì \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
b,Để pt trên là pt tương đương thì pt(1) có nghiệm x=0, thay x=0 vào pt(1) ta có:
\(2\left(m-1\right)x+3=2m-5\\ \Leftrightarrow2\left(m-1\right).3+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
a: Để (1) là phươg trình bậc nhất 1 ẩn thì (m-1)<>0
hay m<>1
b: Ta có: 2x+5=3(x+2)-1
=>2x+5=3x+6-1
=>3x+5=2x+5
=>x=0
Thay x=0 vào (1), ta được:
2m-5=3
hay m=4
a, Để pt trên là pt bậc nhất 1 ẩn thì: \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
Để pt (1) tương đương vs pt trên thì
\(2\left(m-1\right).0+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
Chọn D.
+) (m + 2)x ≤ m + 1
+) 3m(x - 1) ≤ -x - 1 ⇔ 3mx - 3m + x + 1 ≤ (3m + 1)x ≤ 3m - 1
Hai bất phương trình (m + 2)x ≤ m + 1 và 3m(x - 1) ≤ -x - 1 tương đương khi và chỉ khi hai bất phương trình có cùng tập nghiệm khi đó:
⇔ (m + 1)(3m + 1) = (m + 2)(3m - 1)
⇔ 3 m 2 + m + 3m + 1 = 3 m 2 - m + 6m - 2
⇔ 3 m 2 + m + 3m + 1 - 3 m 2 + m - 6m + 2 = 0
⇔ -m + 3 = 0
⇔ m = 3 (thỏa mãn)
Câu 1:
A: Hai phương trình này tương đương vì có chung tập nghiệm S={-3}
B: Hai phương trình này không tương đương vì hai phương trình này không có chung tập nghiệm
Câu 2:
\(\left(y-2\right)^2=y+4\)
\(\Leftrightarrow y^2-4y+4-y-4=0\)
\(\Leftrightarrow y\left(y-5\right)=0\)
=>y=0 hoặc y=5
Với giá trị nào của m thi hai bất phương trình tương đương ?
(a-1)x -a + 3>0 và (a+1)x -a + 2 >0
A.a=1 B. a = 5 C. a=-1 D. -1<a<1
D