Cho xy+yz+zx=4.CMR: \(x^4+y^4+z^4\ge\frac{16}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{16}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{\sqrt{3}}\)
\(P=\frac{3\left(x^3+y^3+z^3\right)}{4\left(xy+yz+zx\right)}+\frac{1}{\left(x+y+z\right)^2}\ge\frac{\left(x+y+z\right)\left(xy+yz+zx\right)}{4\left(xy+yz+zx\right)}+\frac{1}{\left(x+y+z\right)^2}\)
\(=\frac{x+y+z}{4}+\frac{1}{\left(x+y+z\right)^2}\)
Đặt \(x+y+z=a\) thì cần chứng minh
\(\frac{a}{4}+\frac{1}{a^2}\ge\frac{3}{4}\)
\(\Leftrightarrow\left(a-2\right)^2\left(a+1\right)\ge0\)(đúng)
vì x+y+z=1nên
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)
nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)
\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)
dau = xay ra khi x=y=z=1/3
Áp dụng bđt a^2+b^2+c^2 >= ab+bc+ca và a^2+b^2+c^2 >= (a+b+c)^3/3 thì :
x^4+y^4+z^4 >= x^2y^2+y^2z^2+z^2x^2 >= (xy+yz+zx)^2/3 = 4^2/3 = 16/3 ( ĐPCM )
Dấu "=" xảy ra <=> x=y=z và xy+yz+zx=4 <=> x=y=z = +-\(\frac{2}{\sqrt{3}}\)
k mk nha