Giải pt:(x+5)(x+6)(x+7)=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)
\(\Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\)
\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)
Gọi: \(x^2-11x+29=a\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)=1680\)
\(\Leftrightarrow a^2-1=1680\)
\(\Leftrightarrow a^2=1681\)
\(\Leftrightarrow a=\pm41\)
* Nếu \(a=-41\)
\(\Leftrightarrow x^2-11x+29=-41\)
\(\Leftrightarrow x^2-11x+70=0\)
\(\Leftrightarrow x^2-2.\dfrac{11}{2}x+\dfrac{121}{4}-\dfrac{121}{4}+70=0\)
\(\Leftrightarrow\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}=0\) ( vô nghiệm )
*Nếu \(a=41\)
\(\Leftrightarrow x^2-11x+29=41\)
\(\Leftrightarrow x^2-11x-12=0\)
\(\Leftrightarrow x^2+x-12x-12=0\)
\(\Leftrightarrow x\left(x+1\right)-12\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=12\end{matrix}\right.\)
Vây: Tập nghiệm của phương trình là: \(S=\left\{-1;12\right\}\)
_Chúc bạn học tốt_
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\sqrt[3]{7-x}=a;\sqrt[3]{5-x}=b\) ( a + b \(\ne\) 0)
=> a3 + b3 = 12 - 2x = 2(6 - x) ; a3 - b3 = 2
PT <=> \(\frac{a-b}{a+b}=\frac{a^3+b^3}{2}\) <=> (a3 + b3)(a+ b) = 2(a - b)
Thế 2 = a3 - b3 ta được:
(a3 + b3)(a+ b) = (a3 - b3)(a - b)
<=> a4 + a3b + ab3 + b4 = a4 - a3b - ab3 + b4
<=> a3b + ab3 = - a3b - ab3
<=> 2(a3b + ab3) = 0 <=> ab.(a2+ b2) = 0 <=> ab = 0 hoặc a2 + b2 = 0
+) ab = 0 => a = 0 hoặc b = 0
Nếu a = 0 thì b3 = - 2 => \(b=-\sqrt[3]{2}\)
Nếu b = 0 thì a3 = 2 => \(a=\sqrt[3]{2}\)
+) a2 + b2 = 0 => a = b = 0 => Loại (vì a + b khác 0)
Vậy a = 0 hoặc b = 0
a = 0 => x = 7
b = 0 => x = 5
Vậy...........
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}-\frac{1}{x+1}-\frac{1}{x+3}-\frac{1}{x+4}-\frac{1}{x+6}=0\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{\left(x+4\right)\left(x+5\right)}-\frac{1}{\left(x+6\right)\left(x+7\right)}=0\)
\(\Leftrightarrow\frac{8x+20}{x\left(x+1\right)\left(x+4\right)\left(x+5\right)}+\frac{8x+36}{\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x+7\right)}=0\).Đến đây mk chịu
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu B đây;vừa bị lag
B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)
⇔ \(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1
⇔ \(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0
⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0
Mà \(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0
⇔ x+36=0
⇔ x=-36
Vậy tập nghiệm của phương trình đã cho là:S={-36}
câu C tương tự nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(x\left(x+7\right)=-6\)
\(\Leftrightarrow x;x+7\inƯ\left(-6\right)\)
\(\Leftrightarrow x;x+7\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
*Trường hợp 1:
\(\left\{{}\begin{matrix}x=1\\x+7=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-13\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x=-6\\x+7=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\x=-6\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x=-1\\x+7=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x=6\\x+7=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
*Trường hợp 5:
\(\left\{{}\begin{matrix}x=2\\x+7=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
*Trường hợp 6:
\(\left\{{}\begin{matrix}x=-3\\x+7=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
*Trường hợp 7:
\(\left\{{}\begin{matrix}x=-2\\x+7=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
*Trường hợp 8:
\(\left\{{}\begin{matrix}x=3\\x+7=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\)
Vậy: \(x\in\left\{1;-13;-6;-1;6;2;-10;-3;-5;-2;-4;3;-9\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
Cho tam giác ABC vuông ở A đường cao AH,qua B kẻ đường thẳng song song với AH cắt AC tại K,kẻ AM vuông góc với BK tại M,lấy I là trung điểm của KC, gọi E là giao điểm của BI và MH, chứng minh cos^3K.sin k = EH/KC