K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=1\cdot3+3\cdot5+...+49\cdot51\)

\(=1\left(1+2\right)+3\left(3+2\right)+...+49\left(1+2\right)\)

\(=\left(1^2+3^2+...+49^2\right)+2\left(1+3+...+49\right)\)

\(=\left[1^2+3^2+...+\left(2\cdot25-1\right)^2\right]+2\cdot\left[\left(\dfrac{49-1}{2}+1\right)\cdot\dfrac{\left(49+1\right)}{2}\right]\)

\(=\dfrac{25\left(4\cdot25^2-1\right)}{3}+2\cdot25\cdot\dfrac{50}{2}\)

\(=25\cdot\dfrac{\left(4\cdot625-1\right)}{3}+25\cdot50\)

\(=25\cdot833+25\cdot50=22075\)

5 tháng 11 2024

Chúng ta hãy tìm tổng của dãy số S=1⋅3+3⋅5+5⋅7+…+49⋅51S = 1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \ldots + 49 \cdot 51.

Dãy này có thể được viết lại dưới dạng:

S=∑k=125(2k−1)(2k+1)S = \sum_{k=1}^{25} (2k-1)(2k+1)

Chúng ta có thể nhận thấy rằng:

(2k−1)(2k+1)=(2k)2−1(2k-1)(2k+1) = (2k)^2 - 1

Vậy tổng SS có thể được viết lại như sau:

S=∑k=125[(2k)2−1]S = \sum_{k=1}^{25} [(2k)^2 - 1] =∑k=125(4k2−1)= \sum_{k=1}^{25} (4k^2 - 1) =4∑k=125k2−∑k=1251= 4 \sum_{k=1}^{25} k^2 - \sum_{k=1}^{25} 1

Ta biết rằng:

∑k=125k2=25⋅26⋅516=5525\sum_{k=1}^{25} k^2 = \frac{25 \cdot 26 \cdot 51}{6} = 5525 ∑k=1251=25\sum_{k=1}^{25} 1 = 25

Do đó:

S=4⋅5525−25=22100−25=22075S = 4 \cdot 5525 - 25 = 22100 - 25 = 22075

Vậy, tổng của dãy số là 2207522075. Khó lắm đấy

1 tháng 2 2020

\(S=\frac{4}{1\times3}+\frac{16}{3\times5}+\frac{36}{5\times7}+...+\frac{2500}{49\times51}\)

\(=\frac{1\times3+1}{1\times3}+\frac{3\times5+1}{3\times5}+\frac{5\times7+1}{5\times7}+...+\frac{49\times51+1}{49\times51}\)

\(=\frac{1\times3}{1\times3}+\frac{1}{1\times3}+\frac{3\times5}{3\times5}+\frac{1}{3\times5}+\frac{5\times7}{5\times7}+\frac{1}{5\times7}+...+\frac{49\times51}{49\times51}+\frac{1}{49\times51}\)

\(=1+\frac{1}{1\times3}+1+\frac{1}{3\times5}+1+\frac{1}{5\times7}+...+\frac{1}{49\times51}\) (  Có : \(\left(51-3\right)\div2+1=25\)chữ số 1 )

\(=25+\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{49\times51}\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}\right)+\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\times\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\times\left(\frac{1}{49}-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\frac{50}{51}\)

\(=25+\frac{25}{51}\)

\(=\frac{1300}{51}\)

1 tháng 2 2020

\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)

\(=\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+...+\frac{2500}{2499}\)

\(=1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+...+1+\frac{1}{2499}\)

\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2500}\right)\)

\(=25+\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\right)\)

Đặt \(A=\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=1-\frac{1}{51}=\frac{50}{51}\)

\(\Rightarrow S=25+\frac{50}{51}=\frac{1325}{51}\)

Vậy S=\(\frac{1325}{51}\)

6 tháng 8 2015

\(\frac{3}{1x3}+\frac{3}{3x5}+...+\frac{3}{49x51}=\frac{3}{2}\left(\frac{2}{1x3}+\frac{2}{3x5}+...+\frac{2}{49x51}\right)=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

6 tháng 7 2017

Đặt \(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{49\cdot51}\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{51}\right)\)

\(\Rightarrow S=\frac{3}{2}\cdot\frac{50}{51}=\frac{3\cdot50}{2\cdot51}=\frac{150}{102}=\frac{25}{17}\)

24 tháng 3 2019

Ta có:

\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+........+\frac{2500}{49.51}\)

2 tháng 4 2019

Dễ thôi bạn à

\(A=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)

\(A=\frac{1.3+1}{1.3}+\frac{3.5+1}{3.5}+\frac{5.7+1}{5.7}+...+\frac{49.50+1}{49.51}\)

\(A=\frac{1.3}{1.3}+\frac{1}{1.3}+\frac{3.5}{3.5}+\frac{1}{3.5}+\frac{5.7}{5.7}+\frac{1}{5.7}+...+\frac{49.51}{49.51}+\frac{1}{49.51}\)

\(A=1+\frac{1}{1.3}+1+\frac{1}{3.5}+1+\frac{1}{5.7}+...+1+\frac{1}{49.51}\) (có: (51 - 3) : 2 + 1 = 25 chữ số 1)

\(A=25+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(A=25+\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{49}-\frac{1}{51}\right)\)

\(A=25+\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=25+\frac{1}{2}.\left(1-\frac{1}{51}\right)\)

\(A=25+\frac{1}{2}.\frac{50}{51}\)

\(A=25+\frac{25}{51}\)

\(A=\frac{1300}{51}\)

2 tháng 4 2019

thank you

18 tháng 3 2019

A=1/6+1/12+1/20+1/30+1/42+1/56+1/72

A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9

A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/2-1/9

Câu B tương tự nha bạn :333